
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456128/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Uncovering Molecular Processes in Crystal Nucleation and Growth by Using Molecular Simulation.<br>Angewandte Chemie - International Edition, 2011, 50, 1996-2013.                                                                                                                                                 | 13.8 | 220       |
| 2  | Enhancement of the Wolf Damped Coulomb Potential:Â Static, Dynamic, and Dielectric Properties of<br>Liquid Water from Molecular Simulation. Journal of Physical Chemistry B, 2002, 106, 10725-10732.                                                                                                              | 2.6  | 131       |
| 3  | Atomistic Mechanism of NaCl Nucleation from an Aqueous Solution. Physical Review Letters, 2004, 92, 040801.                                                                                                                                                                                                       | 7.8  | 127       |
| 4  | Biomimetic Fluorapatite–Gelatine Nanocomposites: Pre-Structuring of Gelatine Matrices by Ion<br>Impregnation and Its Effect on Form Development. Angewandte Chemie - International Edition, 2006, 45,<br>1905-1910.                                                                                               | 13.8 | 125       |
| 5  | Synthesis and Characterization of Gelatinâ€Based Magnetic Hydrogels. Advanced Functional Materials,<br>2014, 24, 3187-3196.                                                                                                                                                                                       | 14.9 | 114       |
| 6  | Intrinsic Electric Dipole Fields and the Induction of Hierarchical Form Developments in<br>Fluorapatite–Gelatine Nanocomposites: A General Principle for Morphogenesis of Biominerals?.<br>Angewandte Chemie - International Edition, 2006, 45, 1911-1915.                                                        | 13.8 | 102       |
| 7  | Computational study of interfaces between hydroxyapatite and water. Physical Chemistry Chemical Physics, 2003, 5, 4004.                                                                                                                                                                                           | 2.8  | 99        |
| 8  | Lithium Argyrodites with Phosphorus and Arsenic: Order and Disorder of Lithium Atoms, Crystal<br>Chemistry, and Phase Transitions. Chemistry - A European Journal, 2010, 16, 2198-2206.                                                                                                                           | 3.3  | 81        |
| 9  | Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Nonâ€Classical Nucleation.<br>ChemPhysChem, 2015, 16, 2069-2075.                                                                                                                                                                             | 2.1  | 80        |
| 10 | Nucleation and Growth in Pressure-Induced Phase Transitions from Molecular Dynamics Simulations:<br>Mechanism of the Reconstructive Transformation of NaCl to the CsCl-Type Structure. Physical Review<br>Letters, 2004, 92, 250201.                                                                              | 7.8  | 79        |
| 11 | The Nucleation Mechanism of Fluorapatite–Collagen Composites: Ion Association and Motif Control by Collagen Proteins. Angewandte Chemie - International Edition, 2008, 47, 4982-4985.                                                                                                                             | 13.8 | 73        |
| 12 | Improving the Charge Transport in Self-Assembled Monolayer Field-Effect Transistors: From Theory to Devices. Journal of the American Chemical Society, 2013, 135, 4893-4900.                                                                                                                                      | 13.7 | 72        |
| 13 | Magnetite nanoparticles as efficient materials for removal of glyphosate from water. Nature<br>Sustainability, 2020, 3, 129-135.                                                                                                                                                                                  | 23.7 | 72        |
| 14 | Atomistic Mechanisms of ZnO Aggregation from Ethanolic Solution: Ion Association, Proton<br>Transfer, and Self-Organization. Nano Letters, 2008, 8, 2336-2340.                                                                                                                                                    | 9.1  | 68        |
| 15 | Atomistic Characterisation of Li <sup>+</sup> Mobility and Conductivity in<br>Li <sub>7â^²<i>x</i></sub> PS <sub>6â^²<i>x</i></sub> I <sub><i>x</i></sub> Argyrodites from Molecular<br>Dynamics Simulations, Solid‣tate NMR, and Impedance Spectroscopy. Chemistry - A European Journal,<br>2010. 16. 8347-8354. | 3.3  | 67        |
| 16 | Robot-Based High-Throughput Screening of Antisolvents for Lead Halide Perovskites. Joule, 2020, 4,<br>1806-1822.                                                                                                                                                                                                  | 24.0 | 65        |
| 17 | Theoretical Study of the Mechanisms of Acid-Catalyzed Amide Hydrolysis in Aqueous Solution. Journal of Physical Chemistry B, 2003, 107, 12303-12306.                                                                                                                                                              | 2.6  | 63        |
| 18 | An atomistic simulation scheme for modeling crystal formation from solution. Journal of Chemical Physics, 2006, 124, 024513.                                                                                                                                                                                      | 3.0  | 63        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | On the Role of Water in Amide Hydrolysis. European Journal of Organic Chemistry, 2004, 2004, 4020-4023.                                                                                                                                    | 2.4  | 62        |
| 20 | The remediation of nano-/microplastics from water. Materials Today, 2021, 48, 38-46.                                                                                                                                                       | 14.2 | 56        |
| 21 | Atomistic Simulation Study of the Order/Disorder (Monoclinic to Hexagonal) Phase Transition of Hydroxyapatite. Chemistry of Materials, 2005, 17, 1978-1981.                                                                                | 6.7  | 53        |
| 22 | Mechanism of the pressure-induced wurtzite to rocksalt transition of CdSe. Physical Review B, 2005, 72, .                                                                                                                                  | 3.2  | 52        |
| 23 | Hydrolysis of a Basic Bismuth Nitrate—Formation and Stability of Novel Bismuth Oxido Clusters.<br>Chemistry - A European Journal, 2011, 17, 6985-6990.                                                                                     | 3.3  | 52        |
| 24 | How Does Water Boil?. Physical Review Letters, 2004, 93, 227801.                                                                                                                                                                           | 7.8  | 51        |
| 25 | Polymorphic phase transitions: Macroscopic theory and molecular simulation. Advanced Drug Delivery Reviews, 2017, 117, 47-70.                                                                                                              | 13.7 | 49        |
| 26 | Walking the Path fromB4- toB1-Type Structures in GaN. Physical Review Letters, 2007, 99, 125505.                                                                                                                                           | 7.8  | 46        |
| 27 | Fullerene Van der Waals Oligomers as Electron Traps. Journal of the American Chemical Society, 2014,<br>136, 10890-10893.                                                                                                                  | 13.7 | 46        |
| 28 | Towards an atomistic understanding of apatite–collagen biomaterials: linking molecular simulation<br>studies of complex-, crystal- and composite-formation to experimental findings. Journal of Materials<br>Science, 2007, 42, 8966-8973. | 3.7  | 41        |
| 29 | On the composition and atomic arrangement of calcium-deficient hydroxyapatite: An ab-initio analysis.<br>Journal of Solid State Chemistry, 2008, 181, 1712-1716.                                                                           | 2.9  | 41        |
| 30 | Mimicking the Growth of a Pathologic Biomineral: Shape Development and Structures of Calcium<br>Oxalate Dihydrate in the Presence of Polyacrylic Acid. Chemistry - A European Journal, 2012, 18,<br>4000-4009.                             | 3.3  | 40        |
| 31 | Car–Parrinello molecular dynamics simulation of base-catalyzed amide hydrolysis in aqueous<br>solution. Chemical Physics Letters, 2004, 383, 134-137.                                                                                      | 2.6  | 39        |
| 32 | A Novel Water-Soluble Hexanuclear Bismuth Oxido Cluster - Synthesis, Structure and Complexation with Polyacrylate. European Journal of Inorganic Chemistry, 2010, 2010, 4763-4769.                                                         | 2.0  | 39        |
| 33 | Indentation and Self-Healing Mechanisms of a Self-Assembled Monolayer—A Combined Experimental and Modeling Study. Journal of the American Chemical Society, 2014, 136, 10718-10727.                                                        | 13.7 | 37        |
| 34 | Elucidation of the Conversion Reaction of CoMnFeO <sub>4</sub> Nanoparticles in Lithium Ion<br>Battery Anode via Operando Studies. ACS Applied Materials & Interfaces, 2016, 8, 15320-15332.                                               | 8.0  | 35        |
| 35 | Improved GAFF2 parameters for fluorinated alkanes and mixed hydro- and fluorocarbons. Journal of<br>Molecular Modeling, 2019, 25, 39.                                                                                                      | 1.8  | 35        |
| 36 | Superoleophilic Magnetic Iron Oxide Nanoparticles for Effective Hydrocarbon Removal from Water.<br>Advanced Functional Materials, 2019, 29, 1805742.                                                                                       | 14.9 | 32        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantum–Classical Simulation of Proton Migration in Water. Israel Journal of Chemistry, 1999, 39,<br>469-482.                                                                                                               | 2.3  | 31        |
| 38 | Molecular Simulation of Ag Nanoparticle Nucleation from Solution: Redox-Reactions Direct the Evolution of Shape and Structure. Nano Letters, 2014, 14, 4913-4917.                                                           | 9.1  | 31        |
| 39 | Low-dimensional sublattice melting by pressure: Superionic conduction in the phase interfaces of the fluorite-to-cotunnite transition ofCaF2. Physical Review B, 2006, 74, .                                                | 3.2  | 30        |
| 40 | In situ investigation of two-step nucleation and growth of CdS nanoparticles from solution.<br>Nanoscale, 2015, 7, 11328-11333.                                                                                             | 5.6  | 30        |
| 41 | Atomistic Mechanisms of Phase Separation and Formation of Solid Solutions:Â Model Studies of NaCl,<br>NaClâ^'NaF, and Na(Cl1-xBrx) Crystallization from the Melt. Journal of Physical Chemistry B, 2007, 111,<br>5249-5253. | 2.6  | 29        |
| 42 | A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice.<br>Journal of Allergy and Clinical Immunology, 2021, 148, 506-522.e8.                                                      | 2.9  | 29        |
| 43 | Putting the squeeze on NaCl: modelling and simulation of the pressure driven B1-B2 phase transition.<br>Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 339-344.                                       | 0.8  | 28        |
| 44 | Mechanisms of Calcium and Phosphate Ion Association in Aqueous Solution. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2004, 630, 1507-1511.                                                                       | 1.2  | 28        |
| 45 | Molecular mechanics modeling of azobenzene-based photoswitches. Journal of Molecular Modeling, 2012, 18, 2479-2482.                                                                                                         | 1.8  | 25        |
| 46 | Fluctuations in surface pH of maturing rat incisor enamel are a result of cycles of H+-secretion by ameloblasts and variations in enamel buffer characteristics. Bone, 2014, 60, 227-234.                                   | 2.9  | 25        |
| 47 | Chemical-recognition-driven selectivity of SnO2-nanowire-based gas sensors. Nano Today, 2021, 40, 101265.                                                                                                                   | 11.9 | 25        |
| 48 | Control of Channel Shapes in a Microporous Manganese(II)–Borophosphate Framework by Variation<br>of Size and Shape of Organic Template Cations. Chemistry - A European Journal, 2007, 13, 1737-1745.                        | 3.3  | 24        |
| 49 | Quantum–classical simulation of proton transport via a phospholipid bilayer. Physical Chemistry<br>Chemical Physics, 2001, 3, 848-852.                                                                                      | 2.8  | 23        |
| 50 | Molecular dynamics investigation of the pressure induced B1 to B2 phase transitions of RbBr. Journal of Solid State Chemistry, 2004, 177, 3590-3594.                                                                        | 2.9  | 23        |
| 51 | Multicenter multidomainB1â^B2pressure-induced reconstructive phase transition in potassium fluoride. Physical Review B, 2005, 72, .                                                                                         | 3.2  | 23        |
| 52 | Multifunctional layered magnetic composites. Beilstein Journal of Nanotechnology, 2015, 6, 134-148.                                                                                                                         | 2.8  | 22        |
| 53 | Molecular dynamics simulations of phosphonic acid–aluminum oxide self-organization and their<br>evolution into ordered monolayers. Physical Chemistry Chemical Physics, 2017, 19, 5137-5144.                                | 2.8  | 22        |
| 54 | Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations. Chemical Physics, 2004, 300, 79-83.                                                                | 1.9  | 21        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | From Composites to Solid Solutions: Modeling of Ionic Conductivity in the<br>CaF <sub>2</sub> –BaF <sub>2</sub> System. Chemistry - A European Journal, 2012, 18, 6225-6229.                                        | 3.3  | 20        |
| 56 | Molecular dynamics study of water pores in a phospholipid bilayer. Chemical Physics Letters, 2002, 352, 441-446.                                                                                                    | 2.6  | 19        |
| 57 | Motif Reconstruction in Clusters and Layers: Benchmarks for the Kawska–Zahn Approach to Model<br>Crystal Formation. ChemPhysChem, 2010, 11, 847-852.                                                                | 2.1  | 19        |
| 58 | Thermoanalytical Evidence of Metastable Molecular Defects in Form I of Benzamide. Crystal Growth and Design, 2012, 12, 5365-5372.                                                                                   | 3.0  | 19        |
| 59 | On the Function of Saccharides during the Nucleation of Calcium Carbonate–Protein Biocomposites.<br>Crystal Growth and Design, 2013, 13, 4885-4889.                                                                 | 3.0  | 19        |
| 60 | Collective displacements in a molecular crystal polymorphic transformation. RSC Advances, 2013, 3, 12810.                                                                                                           | 3.6  | 19        |
| 61 | Improving the Performance of Organic Thinâ€Film Transistors by Ion Doping of Ethyleneâ€Clycolâ€Based<br>Selfâ€Assembled Monolayer Hybrid Dielectrics. Advanced Materials, 2015, 27, 8023-8027.                      | 21.0 | 19        |
| 62 | The nano- and meso-scale structure of amorphous calcium carbonate. Scientific Reports, 2022, 12, 6870.                                                                                                              | 3.3  | 19        |
| 63 | The Molecular Mechanism of α-Resorcinol's Asymmetric Crystal Growth from the Melt. Crystal<br>Growth and Design, 2015, 15, 4026-4031.                                                                               | 3.0  | 18        |
| 64 | Hydration breaking and chemical ordering in a levitated NaCl solution droplet beyond the metastable zone width limit: evidence for the early stage of two-step nucleation. Chemical Science, 2021, 12, 179-187.     | 7.4  | 18        |
| 65 | The sense of balance in humans: Structural features of otoconia and their response to linear acceleration. PLoS ONE, 2017, 12, e0175769.                                                                            | 2.5  | 18        |
| 66 | Exploring the Mechanisms of Reactions in Solution from Transition Path Sampling Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2006, 2, 107-114.                                       | 5.3  | 17        |
| 67 | In situ X-ray monitoring of transport and chemistry of Ga-containing intermediates under ammonothermal growth conditions of GaN. Journal of Crystal Growth, 2018, 498, 214-223.                                     | 1.5  | 17        |
| 68 | A Molecular Dynamics Simulation Study of (OH?) Schottky Defects in Hydroxyapatite. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2005, 631, 1134-1138.                                                     | 1.2  | 16        |
| 69 | Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir–Blodgett Transfer. Langmuir,<br>2015, 31, 4678-4685.                                                                                          | 3.5  | 16        |
| 70 | Quantum/Classical Investigation of Amide Protonation in Aqueous Solution. Journal of Physical<br>Chemistry A, 2002, 106, 7807-7812.                                                                                 | 2.5  | 15        |
| 71 | Unprejudiced identification of reaction mechanisms from biased transition path sampling. Journal of<br>Chemical Physics, 2005, 123, 044104.                                                                         | 3.0  | 15        |
| 72 | Mechanisms and Nucleation Characteristics of the Pressure-Induced B1â^'B2 Transition in Potassium<br>Halides:Â A Question of Ion Hardness and Softness. Journal of Physical Chemistry B, 2006, 110,<br>10873-10877. | 2.6  | 15        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Molecular Simulation Approach to Bond Reorganization in Epoxy Resins: From Curing to Deformation and Fracture. ACS Polymers Au, 2021, 1, 165-174.                                                                         | 4.1  | 15        |
| 74 | The Influence of Heteroatoms on the Extent of Double Bond Pyramidalization. European Journal of Organic Chemistry, 2003, 2003, 1111-1117.                                                                                   | 2.4  | 14        |
| 75 | Sizeâ€Dependent Phase Stability of a Molecular Nanocrystal: a Proxy for Investigating the Early Stages of Crystallization. Chemistry - A European Journal, 2011, 17, 11186-11192.                                           | 3.3  | 14        |
| 76 | Molecular Dynamics Modeling of Nanoscale CaF2/BaF2 Heterolayer Structures. Journal of Physical Chemistry C, 2009, 113, 1315-1319.                                                                                           | 3.1  | 13        |
| 77 | On the molecular mechanisms of the acid-induced dissociation of hydroxy-apatite in water. Journal of<br>Molecular Modeling, 2011, 17, 1525-1528.                                                                            | 1.8  | 13        |
| 78 | Nucleation Mechanisms of a Polymorphic Molecular Crystal: Solvent-Dependent Structural Evolution of Benzamide Aggregates. Crystal Growth and Design, 2014, 14, 2972-2976.                                                   | 3.0  | 13        |
| 79 | Investigations on the growth of bismuth oxido clusters and the nucleation to give metastable<br>bismuth oxide modifications. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 185-207.                  | 0.8  | 13        |
| 80 | Mechanism of the pressure induced reconstructive transformation of KCl from the NaCl type to the<br>CsCl type structure. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, .                             | 0.8  | 12        |
| 81 | Competing Evaporation and Condensation Processes during the Boiling of Methane. Journal of Physical Chemistry B, 2006, 110, 19601-19604.                                                                                    | 2.6  | 12        |
| 82 | Molecular modeling of (101̄0) and (0001̄) zinc oxide surface growth from solution: islands, ridges and<br>growth-controlling additives. CrystEngComm, 2015, 17, 6890-6894.                                                  | 2.6  | 12        |
| 83 | Two-Step Nucleation Rather than Self-Poisoning: An Unexpected Mechanism of Asymmetrical<br>Molecular Crystal Growth. Crystal Growth and Design, 2015, 15, 5118-5123.                                                        | 3.0  | 12        |
| 84 | On the solvation of metal ions in liquid ammonia: a molecular simulation study of<br>M(NH <sub>2</sub> ) <sub>x</sub> (NH <sub>3</sub> ) <sub>y</sub> complexes as a function of pH. RSC<br>Advances, 2017, 7, 54063-54067. | 3.6  | 12        |
| 85 | Multifunctional and Tunable Surfaces Based on Pyrene Functionalized Nanoparticles. Advanced<br>Materials Interfaces, 2019, 6, 1801930.                                                                                      | 3.7  | 12        |
| 86 | Supraparticles for Bareâ€Eye H <sub>2</sub> Indication and Monitoring: Design, Working Principle, and<br>Molecular Mobility. Advanced Functional Materials, 2022, 32, .                                                     | 14.9 | 12        |
| 87 | From Amorphous Aggregates to Crystallites: Modelling Studies of Crystal Growth in Vacuum.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1172-1176.                                                      | 1.2  | 11        |
| 88 | The Role of Substitutional Defects in Order/Disorder Phenomena of OHâ^' Ions in Hydroxyapatite.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 79-83.                                                    | 1.2  | 11        |
| 89 | The evolution of crystalline ordering for ligand-ornamented zinc oxide nanoparticles.<br>CrystEngComm, 2016, 18, 2163-2172.                                                                                                 | 2.6  | 11        |
| 90 | Elucidating water dynamics in MgCl 2 hydrates from molecular dynamics simulation. Solid State Sciences, 2017, 69, 64-70.                                                                                                    | 3.2  | 11        |

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Polarization Effects in Dynamic Interfaces of Platinum Electrodes and Ionic Liquid Phases: A<br>Molecular Dynamics Study. Journal of Physical Chemistry C, 2020, 124, 2002-2007.                                                                                          | 3.1  | 11        |
| 92  | Molecular Simulation of Thermosetting Polymer Hardening: Reactive Events Enabled by Controlled<br>Topology Transfer. Macromolecules, 2020, 53, 9698-9705.                                                                                                                 | 4.8  | 11        |
| 93  | On the photophysics of nanographenes – investigation of functionalized<br>hexa- <i>peri</i> -hexabenzocoronenes as model systems. Nanoscale, 2021, 13, 801-809.                                                                                                           | 5.6  | 11        |
| 94  | Atomistic Simulation Study of the Pressure Induced Incorporation of Helium into C60. Journal of Physical Chemistry B, 2004, 108, 16495-16498.                                                                                                                             | 2.6  | 10        |
| 95  | Atomistic Simulation Study of Calcium, Phosphate and Fluoride Ion Association to the<br>Teleopeptide-Tails of Collagen – Initial Steps to Biomineral Formation. Zeitschrift Fur Anorganische<br>Und Allgemeine Chemie, 2007, 633, 411-414.                                | 1.2  | 10        |
| 96  | Extending the scope of â€~in silico experiments': Theoretical approaches for the investigation of reaction mechanisms, nucleation events and phase transitions. Science and Technology of Advanced Materials, 2007, 8, 434-441.                                           | 6.1  | 10        |
| 97  | Barium titanate nanoparticle self-organization in an external electric field. Journal of Materials<br>Chemistry, 2011, 21, 16978.                                                                                                                                         | 6.7  | 10        |
| 98  | A new polymorph (IV) of benzamide: Structural characterization and mechanism of the l↔IV phase transition. Chemical Physics Letters, 2011, 514, 274-277.                                                                                                                  | 2.6  | 10        |
| 99  | Molecular dynamics simulation of ionic conductors: perspectives and limitations. Journal of Molecular Modeling, 2011, 17, 1531-1535.                                                                                                                                      | 1.8  | 10        |
| 100 | Solvation structure and dynamics of Ag <b>+</b> in aqueous ammonia solutions: A molecular simulation study. Journal of Chemical Physics, 2017, 147, 114506.                                                                                                               | 3.0  | 10        |
| 101 | Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface Morphology toward Tuning the Optoelectronic Properties. Small, 2020, 16, e1903729.                                                                                                                      | 10.0 | 10        |
| 102 | Atomic mechanisms of superionic conductivity in fluorite. Solid State Ionics, 2009, 180, 116-119.                                                                                                                                                                         | 2.7  | 9         |
| 103 | Surface Effects in the Pressureâ€Induced Structural Transformation of a ZnO NanorodÂ. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2009, 635, 1773-1776.                                                                                                        | 1.2  | 9         |
| 104 | Atomistic modeling of apatite-collagen composites from molecular dynamics simulations extended to hyperspace. Journal of Molecular Modeling, 2011, 17, 73-79.                                                                                                             | 1.8  | 9         |
| 105 | From oligomers towards a racemic crystal: molecular simulation of <scp>dl</scp> -norleucine crystal nucleation from solution. CrystEngComm, 2015, 17, 6884-6889.                                                                                                          | 2.6  | 9         |
| 106 | On the Role of Silica Carrier Curvature for the Unloading of Small Drug Molecules: A Molecular<br>Dynamics Simulation Study. Journal of Pharmaceutical Sciences, 2020, 109, 2018-2023.                                                                                    | 3.3  | 9         |
| 107 | A Molecular View of the Ionic Liquid Catalyst Interface of SCILLs: Coverage-Dependent Adsorption<br>Motifs of [C <sub>4</sub> C <sub>1</sub> Pyr][NTf <sub>2</sub> ] on Pd Single Crystals and<br>Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 13264-13272. | 3.1  | 9         |
| 108 | A Molecular Rationale of Shock Absorption and Selfâ€Healing in a Biomimetic Apatite–Collagen<br>Composite under Mechanical Load. Angewandte Chemie - International Edition, 2010, 49, 9405-9407.                                                                          | 13.8 | 8         |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.<br>Journal of Molecular Modeling, 2012, 18, 3455-3466.                                                                                                 | 1.8  | 8         |
| 110 | Analysis of the molecular interactions governing the polymorphism of benzamide – a guide to syntheses?. Physical Chemistry Chemical Physics, 2013, 15, 9219.                                                                                                | 2.8  | 8         |
| 111 | A molecular simulation study of the auto-protolysis of ammonia as a function of temperature.<br>Chemical Physics Letters, 2017, 682, 55-59.                                                                                                                 | 2.6  | 8         |
| 112 | Molecular Mechanisms of Solvent-Controlled Assembly of Phosphonate Monolayers on Oxide<br>Surfaces. Journal of Physical Chemistry C, 2017, 121, 18012-18020.                                                                                                | 3.1  | 8         |
| 113 | Molecular mechanisms of mesoporous silica formation from colloid solution: Ripening-reactions arrest hollow network structures. PLoS ONE, 2019, 14, e0212731.                                                                                               | 2.5  | 8         |
| 114 | Red light-triggered photoreduction on a nucleic acid template. Chemical Communications, 2020, 56, 10026-10029.                                                                                                                                              | 4.1  | 8         |
| 115 | Interaction Models and Molecular Simulation Systems of Steel–Organic Friction Modifier Interfaces.<br>Tribology Letters, 2021, 69, 1.                                                                                                                       | 2.6  | 8         |
| 116 | Length-dependent nucleation mechanisms rule the vaporization of n-alkanes. Chemical Physics Letters, 2008, 467, 80-83.                                                                                                                                      | 2.6  | 7         |
| 117 | On the mechanisms of ionic conductivity in BaLiF3: a molecular dynamics study. Physical Chemistry Chemical Physics, 2011, 13, 21492.                                                                                                                        | 2.8  | 7         |
| 118 | Nucleation mechanism and kinetics of the perovskite to post-perovskite transition of MgSiO3 under extreme conditions. Chemical Physics Letters, 2013, 573, 5-7.                                                                                             | 2.6  | 7         |
| 119 | Molecular Mechanisms of [Bi6O4(OH)4](NO3)6Precursor Activation, Agglomeration, and Ripening towards Bismuth Oxide Nuclei. European Journal of Inorganic Chemistry, 2015, 2015, 1178-1181.                                                                   | 2.0  | 7         |
| 120 | Multi-scale simulations of apatite–collagen composites: from molecules to materials. Frontiers of<br>Materials Science, 2017, 11, 1-12.                                                                                                                     | 2.2  | 7         |
| 121 | Directed Dehydration as Synthetic Tool for Generation of a New Na <sub>4</sub> SnS <sub>4</sub><br>Polymorph: Crystal Structure, Na <sup>+</sup> Conductivity, and Influence of Sbâ€&ubstitution.<br>Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 7         |
| 122 | A comparative study of proton migration in water and deuteron transport in heavy water by means of mixed quantum/classical molecular dynamics simulation. Chemical Physics Letters, 2000, 331, 224-228.                                                     | 2.6  | 6         |
| 123 | Minimum energy pathways of brittle and ductile deformation/fracture processes. Journal of Chemical<br>Physics, 2008, 128, 184707.                                                                                                                           | 3.0  | 6         |
| 124 | Structure and interactions in benzamide molecular crystals. Molecular Simulation, 2013, 39, 1079-1083.                                                                                                                                                      | 2.0  | 6         |
| 125 | Approaching Dissolved Species in Ammonoacidic GaN Crystal Growth: A Combined Solution NMR and<br>Computational Study. Chemistry - A European Journal, 2020, 26, 7008-7017.                                                                                  | 3.3  | 6         |
| 126 | Nonclassical Nucleation—Role of Metastable Intermediate Phase in Crystal Nucleation: An Editorial<br>Prefix. Crystals, 2021, 11, 174.                                                                                                                       | 2.2  | 6         |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Modeling of dislocation patterns of small- and high-angle grain boundaries in aluminum.<br>Computational Materials Science, 2009, 46, 293-296.                                                                                             | 3.0 | 5         |
| 128 | Fluorapatite–Gelatine Nanocomposite Superstructures: New Insights into a Biomimetic System of High<br>Complexity. ChemPhysChem, 2010, 11, 1851-1853.                                                                                       | 2.1 | 5         |
| 129 | Atomistic In Situ Investigation of the Morphogenesis of Grains during Pressure-Induced Phase<br>Transitions: Molecular Dynamics Simulations of the B1-B2 Transformation of RbCl. Chemistry - A<br>European Journal, 2010, 16, 13385-13389. | 3.3 | 5         |
| 130 | High-pressure high-temperature synthesis and crystal structure of the isotypic rare earth<br>(RE)–thioborate–sulfides RE9[BS3]2[BS4]3S3, (RE=Dy–Lu). Journal of Solid State Chemistry, 2011, 184,<br>296-303.                              | 2.9 | 5         |
| 131 | Charge distribution analysis in Ag n m + \$\$ {mathbf{Ag}}_{mathbf{n}}^{mathbf{m}+} \$\$ clusters:<br>molecular modeling and DFT calculations. Journal of Molecular Modeling, 2014, 20, 2111.                                              | 1.8 | 5         |
| 132 | Molecular Mechanisms of ZnO Nanoparticle Dispersion in Solution: Modeling of Surfactant<br>Association, Electrostatic Shielding and Counter Ion Dynamics. PLoS ONE, 2015, 10, e0125872.                                                    | 2.5 | 5         |
| 133 | Defect-driven water migration in MgCl2 tetra- and hexahydrates. Journal of Solid State Chemistry, 2019, 277, 221-228.                                                                                                                      | 2.9 | 5         |
| 134 | Bioinspired multifunctional layered magnetic hybrid materials. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 28-46.                                                                                                               | 0.9 | 5         |
| 135 | Assessing the mechanical properties of molecular materials from atomic simulation. AIMS Materials Science, 2021, 8, 867-880.                                                                                                               | 1.4 | 5         |
| 136 | On the mechanism of Zn4O-acetate precursors ripening to ZnO: How dimerization is promoted by hydroxide incorporation. Journal of Chemical Physics, 2015, 143, 064501.                                                                      | 3.0 | 4         |
| 137 | Atomistic modeling of a KRT35/KRT85 keratin dimer: folding in aqueous solution and unfolding under tensile load. Physical Chemistry Chemical Physics, 2015, 17, 21880-21884.                                                               | 2.8 | 4         |
| 138 | A Surfactants Walk to Work: Modes of Action of Citrate Controlling (10-10) and (000-1) Zinc Oxide<br>Surface Growth from Solution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642,<br>902-905.                              | 1.2 | 4         |
| 139 | Fundamental theoretical and practical investigations of the polymorph formation of small<br>amphiphilic molecules, their co-crystals and salts. Zeitschrift Fur Kristallographie - Crystalline<br>Materials, 2017, 232, 55-67.             | 0.8 | 4         |
| 140 | Size-Dependent Local Ordering in Melanin Aggregates and Its Implication on Optical Properties.<br>Journal of Physical Chemistry A, 2019, 123, 9403-9412.                                                                                   | 2.5 | 4         |
| 141 | Interface between Water–Solvent Mixtures and a Hydrophobic Surface. Langmuir, 2020, 36, 12077-12086.                                                                                                                                       | 3.5 | 4         |
| 142 | Interaction potentials for modelling GaN precipitation and solid state polymorphism. Journal of Physics Condensed Matter, 2020, 32, 205401.                                                                                                | 1.8 | 4         |
| 143 | Tailoring mesoporous silica nanomaterials from molecular simulation: Modelling the interplay of condensation reactions, surfactants and space-fillers during self assembly. Microporous and Mesoporous Materials, 2021, 320, 111114.       | 4.4 | 4         |
| 144 | Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite:<br>Molecular-Scale Processes Lead to Resilience at the μm-Scale. PLoS ONE, 2016, 11, e0157241.                                                | 2.5 | 4         |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Deciphering the molecular mechanism of water boiling at heterogeneous interfaces. Scientific Reports, 2021, 11, 19858.                                                                                                               | 3.3 | 4         |
| 146 | On the Atomistic Mechanisms of Alkane (Methaneâ^'Pentane) Separation by Distillation:  A Molecular<br>Dynamics Study. Journal of Physical Chemistry B, 2007, 111, 12518-12523.                                                       | 2.6 | 3         |
| 147 | Molecular dynamics simulation of optimized shearing routes in single- and polycrystalline aluminum.<br>Computational Materials Science, 2009, 45, 845-848.                                                                           | 3.0 | 3         |
| 148 | Shearing mechanisms of MgSiO3at conditions of the Earth's D″ layer. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                                                 | 4.0 | 3         |
| 149 | A first-principles based force-field for Li+ and OHâ^' in ethanolic solution. Journal of Chemical Physics, 2013, 139, 144506.                                                                                                        | 3.0 | 3         |
| 150 | Molecular modeling of amorphous, non-woven polymer networks. Journal of Molecular Modeling,<br>2015, 21, 263.                                                                                                                        | 1.8 | 3         |
| 151 | From bismuth oxide/hydroxide precursor clusters towards stable oxides: Proton transfer reactions and structural reorganization govern the stability of [Bi18O13(OH)10]-nitrate clusters. Chemical Physics Letters, 2018, 691, 87-90. | 2.6 | 3         |
| 152 | Shearing in a Biomimetic Apatite-Protein Composite: Molecular Dynamics of Slip Zone Formation,<br>Plastic Flow and Backcreep Mechanisms. PLoS ONE, 2014, 9, e93309.                                                                  | 2.5 | 3         |
| 153 | Atomistic Simulation Study of Cu0.327Ni0.673Alloys: from Solid Solution to Phase Segregation.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2562-2566.                                                           | 1.2 | 2         |
| 154 | Motif Identification in Materials Simulations. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 649-652.                                                                                                               | 1.2 | 2         |
| 155 | Tackling time-reversibility in transition path sampling molecular dynamics simulations. Molecular Simulation, 2012, 38, 211-217.                                                                                                     | 2.0 | 2         |
| 156 | Molecular simulations of crystal growth: From understanding to tailoring. Advances in Inorganic<br>Chemistry, 2019, , 507-529.                                                                                                       | 1.0 | 2         |
| 157 | Polar Structure Formation in Solid Solution of Strontium-Substituted Fluorapatite–Gelatin<br>Composites: From Structural and Morphogenetic Aspects to Pyroelectric Properties. Chemistry of<br>Materials, 2020, 32, 8619-8632.       | 6.7 | 2         |
| 158 | Molecular dynamics simulation study of NH4+ and NH2â^' in liquid ammonia: interaction potentials,<br>structural and dynamical properties. Journal of Molecular Modeling, 2022, 28, 127.                                              | 1.8 | 2         |
| 159 | Molecular Dynamics Simulations of Nitrate/MgO Interfaces and Understanding Metastability of Thermochemical Materials. ACS Omega, 2022, 7, 16371-16379.                                                                               | 3.5 | 2         |
| 160 | On the Role of Amides and Imides for Understanding GaN Syntheses from Ammonia Solution:<br>Molecular Mechanics Models of Ammonia, Amide and Imide Interactions with Gallium Nitride.<br>ChemPhysChem, 2022, 23, e202200117.          | 2.1 | 2         |
| 161 | Atomistic Simulation Study of the Order/Disorder (Monoclinic to Hexagonal) Phase Transition of<br>Hydroxyapatite ChemInform, 2005, 36, no.                                                                                           | 0.0 | 1         |
| 162 | Modeling martensic transformations in crystalline solids: validity and redesign of geometric approaches. Zeitschrift FÃ1⁄4r Kristallographie, 2011, 226, 568-575.                                                                    | 1.1 | 1         |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | The formation of CdS quantum dots and Au nanoparticles. Zeitschrift Fur Kristallographie -<br>Crystalline Materials, 2017, 232, 39-46.                                                                                        | 0.8  | 1         |
| 164 | Benchmarking and optimization of molecular simulation models of zinc dialkyldithiophosphate and calcium sulfonate oil additives. Journal of Molecular Modeling, 2019, 25, 100.                                                | 1.8  | 1         |
| 165 | Frontispiece: Approaching Dissolved Species in Ammonoacidic GaN Crystal Growth: A Combined<br>Solution NMR and Computational Study. Chemistry - A European Journal, 2020, 26, .                                               | 3.3  | 1         |
| 166 | Tailored Solutionâ€Based N â€heterotriangulene Thin Films: Unravelling the Selfâ€Assembly. ChemPhysChem,<br>2021, 22, 1079-1087.                                                                                              | 2.1  | 1         |
| 167 | Supraparticles for Bareâ€Eye H <sub>2</sub> Indication and Monitoring: Design, Working Principle, and<br>Molecular Mobility (Adv. Funct. Mater. 22/2022). Advanced Functional Materials, 2022, 32, .                          | 14.9 | 1         |
| 168 | Directed dehydratation as synthetic tool for generation of a new Na4SnS4 polymorph: Crystal<br>structure, Na+ conductivity, and influence of Sbâ€substitution. Angewandte Chemie, 0, , .                                      | 2.0  | 1         |
| 169 | Molecular Simulation Analyses of Polymorphism Control Factors by the Example of Carbamazepine<br>Forms I-IV: A Blueprint for Industrial Drug Formulation?. Journal of Pharmaceutical Sciences, 2022, 111,<br>2898-2906.       | 3.3  | 1         |
| 170 | Mechanisms of Calcium and Phosphate Ion Association in Aqueous Solution. ChemInform, 2004, 35, no.                                                                                                                            | 0.0  | 0         |
| 171 | Ketten und Löcher in Wasser. Nachrichten Aus Der Chemie, 2005, 53, 751-755.                                                                                                                                                   | 0.0  | 0         |
| 172 | A Molecular Dynamics Simulation Study of (OH-) Schottky Defects in Hydroxyapatite ChemInform, 2005, 36, no.                                                                                                                   | 0.0  | 0         |
| 173 | Investigation of Crystal Formation from Molecular Dynamics Simulation. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2006, 632, 2085-2085.                                                                           | 1.2  | 0         |
| 174 | Full-Featured Simulation of Reconstructive Solid-Solid Phase Transitions. Zeitschrift Fur<br>Anorganische Und Allgemeine Chemie, 2006, 632, 2086-2086.                                                                        | 1.2  | 0         |
| 175 | Publisher's Note: Low-dimensional sublattice melting by pressure: Superionic conduction in the phase interfaces of the fluorite-to-cotunnite transition ofCaF2[Phys. Rev. B74, 094106 (2006)]. Physical Review B, 2006, 74, . | 3.2  | 0         |
| 176 | On the generation of intrinsic electric dipole fields as the basis for the understanding of the morphogenesis of fluoroapatite-gelatine nano-composites. Chemistry Central Journal, 2008, 2, .                                | 2.6  | 0         |
| 177 | Atomistic modelling of ion aggregation from solution and the self-organization of nanocrystals and nanocomposite biomaterials. Chemistry Central Journal, 2009, 3, .                                                          | 2.6  | 0         |
| 178 | On the Crystal Structure of RE3[BS3]2[BS4]3S3 (RE = Dy -Lu). Zeitschrift Fur Anorganische Und<br>Allgemeine Chemie, 2010, 636, 2101-2101.                                                                                     | 1.2  | 0         |
| 179 | A profound analysis of Rb2[PH] and Cs2[PH] and the role of [PH]2â^' ions during temperature-induced solid–solid phase transitions. Solid State Communications, 2014, 188, 32-35.                                              | 1.9  | 0         |
| 180 | Nanoparticle Surfaces: Mixed Organic Ligand Shells: Controlling the Nanoparticle Surface<br>Morphology toward Tuning the Optoelectronic Properties (Small 2/2020). Small, 2020, 16, 2070009.                                  | 10.0 | 0         |

| #   | Article                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | An embedded atom model for Ga–Pd systems: From intermetallic crystals to liquid alloys. Journal of<br>Chemical Physics, 2021, 154, 014109. | 3.0 | Ο         |
| 182 | Magnetic water cleaning. Nachrichten Aus Der Chemie, 2021, 69, 43-46.                                                                      | 0.0 | 0         |