
Hinrich Abken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4455635/publications.pdf Version: 2024-02-01

HINDICH ARKEN

#	Article	IF	CITATIONS
1	IL12 integrated into the CAR exodomain converts CD8+ TÂcells to poly-functional NK-like cells with superior killing of antigen-loss tumors. Molecular Therapy, 2022, 30, 593-605.	8.2	18
2	Engineering T-cells with chimeric antigen receptors to combat hematological cancers: an update on clinical trials. Cancer Immunology, Immunotherapy, 2022, , 1.	4.2	5
3	Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells, 2022, 11, 994.	4.1	18
4	A Low Dose of Pure Cannabidiol Is Sufficient to Stimulate the Cytotoxic Function of CIK Cells without Exerting the Downstream Mediators in Pancreatic Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 3783.	4.1	8
5	GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD2 and Releasing Inducible IL-18. Frontiers in Immunology, 2022, 13, 839783.	4.8	20
6	Editorial: Implementing Logic Gates in Adoptive Cell Therapy. Frontiers in Immunology, 2022, 13, 902594.	4.8	0
7	Treatment with Living Drugs: Pharmaceutical Aspects of CAR T Cells. Pharmacology, 2022, 107, 446-463.	2.2	8
8	Deregulation and epigenetic modification of BCL2-family genes cause resistance to venetoclax in hematologic malignancies. Blood, 2022, 140, 2113-2126.	1.4	24
9	CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin's lymphoma and tumor-supportive follicular T helper cells. Nature Communications, 2021, 12, 240.	12.8	28
10	IL-2 "Backpacking―Invigorates Treg Cells to Prevent Allograft Rejection. Transplantation, 2021, 105, 1394-1395.	1.0	2
11	Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Human Gene Therapy, 2021, 32, 1011-1028.	2.7	14
12	Chimeric Antigen Receptor (CAR) Redirected T Cells. Learning Materials in Biosciences, 2021, , 251-302.	0.4	1
13	Generation of an NFκB-Driven Alpharetroviral "All-in-One―Vector Construct as a Potent Tool for CAR NK Cell Therapy. Frontiers in Immunology, 2021, 12, 751138.	4.8	11
14	TRUCKS, the fourthâ€generation CAR T cells: Current developments and clinical translation. Advances in Cell and Gene Therapy, 2020, 3, e84.	0.9	85
15	CAR-T cells and TRUCKs that recognize an EBNA-3C-derived epitope presented on HLA-B*35 control Epstein-Barr virus-associated lymphoproliferation. , 2020, 8, e000736.		27
16	Designed Ankyrin Repeat Protein (DARPin) to target chimeric antigen receptor (CAR)-redirected T cells towards CD4+ T cells to reduce the latent HIV+ cell reservoir. Medical Microbiology and Immunology, 2020, 209, 681-691.	4.8	1
17	Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells, 2020, 9, 554.	4.1	8
18	International Regensburg Center for Interventional Immunology (RCI) symposium on "Synthetic immunology and environment-adapted redirection of T cellsâ€, 17–18 July, 2019, Regensburg, Germany. Cancer Immunology, Immunotherapy, 2020, 69, 677-682.	4.2	0

#	Article	IF	CITATIONS
19	Design and Characterization of an "All-in-One―Lentiviral Vector System Combining Constitutive Anti-GD2 CAR Expression and Inducible Cytokines. Cancers, 2020, 12, 375.	3.7	68
20	A Small Number of HER2 Redirected CAR T Cells Significantly Improves Immune Response of Adoptively Transferred Mouse Lymphocytes against Human Breast Cancer Xenografts. International Journal of Molecular Sciences, 2020, 21, 1039.	4.1	25
21	IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells, 2020, 9, 873.	4.1	62
22	Trastuzumab derived HER2-specific CARs for the treatment of trastuzumab-resistant breast cancer: CAR T cells penetrate and eradicate tumors that are not accessible to antibodies. Cancer Letters, 2020, 484, 1-8.	7.2	52
23	Advances and Challenges of CAR T Cells in Clinical Trials. Recent Results in Cancer Research, 2020, 214, 93-128.	1.8	10
24	Blocking CD30 on T Cells by a Dual Specific CAR for CD30 and Colon Cancer Antigens Improves the CAR T Cell Response against CD30â Tumors. Molecular Therapy, 2019, 27, 1825-1835.	8.2	29
25	FimH-based display of functional eukaryotic proteins on bacteria surfaces. Scientific Reports, 2019, 9, 8410.	3.3	3
26	Chimeric antigen receptors designed to overcome transforming growth factorâ€î²â€mediated repression in the adoptive Tâ€cell therapy of solid tumors. Clinical and Translational Immunology, 2019, 8, e1064.	3.8	27
27	Functionality and Cell Senescence of CD4/ CD8-Selected CD20 CAR T Cells Manufactured Using the Automated CliniMACS Prodigy® Platform. Transfusion Medicine and Hemotherapy, 2019, 46, 47-54.	1.6	39
28	CAR T Cells: A Snapshot on the Growing Options to Design a CAR. HemaSphere, 2019, 3, e172.	2.7	34
29	CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications. Human Gene Therapy, 2018, 29, 559-568.	2.7	90
30	Identification of a myofibroblast-specific expression signature in skin wounds. Matrix Biology, 2018, 65, 59-74.	3.6	57
31	Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. Stem Cells, 2018, 36, 1752-1763.	3.2	10
32	CD28-ζ CAR T Cells Resist TGF-β Repression through IL-2 Signaling, Which Can Be Mimicked by an Engineered IL-7 Autocrine Loop. Molecular Therapy, 2018, 26, 2218-2230.	8.2	65
33	CAR T Cells with Enhanced Sensitivity to B Cell Maturation Antigen for the Targeting of B Cell Non-Hodgkin's Lymphoma and Multiple Myeloma. Molecular Therapy, 2018, 26, 1906-1920.	8.2	38
34	Nanobody Based Dual Specific CARs. International Journal of Molecular Sciences, 2018, 19, 403.	4.1	88
35	TRUCKs with IL-18 payload: Toward shaping the immune landscape for a more efficacious CAR T-cell therapy of solid cancer. Advances in Cell and Gene Therapy, 2018, 1, e7.	0.9	11
36	Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncolmmunology, 2017, 6, e1283460.	4.6	22

#	Article	IF	CITATIONS
37	STRIP2 Is Indispensable for the Onset of Embryonic Stem Cell Differentiation. Molecular Therapy - Methods and Clinical Development, 2017, 5, 116-129.	4.1	16
38	Driving CARs on the Highway to Solid Cancer: Some Considerations on the Adoptive Therapy with CAR T Cells. Human Gene Therapy, 2017, 28, 1047-1060.	2.7	35
39	Genetic Modification of T Cells with Chimeric Antigen Receptors: A Laboratory Manual. Human Gene Therapy Methods, 2017, 28, 302-309.	2.1	14
40	CAR T cells targeting solid tumors: carcinoembryonic antigen (CEA) proves to be a safe target. Cancer Immunology, Immunotherapy, 2017, 66, 1505-1507.	4.2	30
41	CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. Cell Reports, 2017, 21, 3205-3219.	6.4	282
42	CD20-CD19 Bispecific CAR T Cells for the Treatment of B-Cell Malignancies. Human Gene Therapy, 2017, 28, 1147-1157.	2.7	74
43	Shared target antigens on cancer cells and tissue stem cells: go or no-go for CAR T cells?. Expert Review of Clinical Immunology, 2017, 13, 151-155.	3.0	10
44	Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma. Frontiers in Immunology, 2017, 8, 1125.	4.8	66
45	Most Do, but Some Do Not: CD4+CD25â^' T Cells, but Not CD4+CD25+ Treg Cells, Are Cytolytic When Redirected by a Chimeric Antigen Receptor (CAR). Cancers, 2017, 9, 112.	3.7	9
46	Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Molecular Therapy, 2016, 24, 1423-1434.	8.2	62
47	The growing world of CAR T cell trials: a systematic review. Cancer Immunology, Immunotherapy, 2016, 65, 1433-1450.	4.2	101
48	Chimeric antigen receptor T cells targeting Fc μ receptor selectively eliminate CLL cells while sparing healthy B cells. Blood, 2016, 128, 1711-1722.	1.4	53
49	Coexpressed Catalase Protects Chimeric Antigen Receptor–Redirected T Cells as well as Bystander Cells from Oxidative Stress–Induced Loss of Antitumor Activity. Journal of Immunology, 2016, 196, 759-766.	0.8	164
50	Tumor-infiltrating HLA-matched CD4 ⁺ T cells retargeted against Hodgkin and Reed–Sternberg cells. OncoImmunology, 2016, 5, e1160186.	4.6	9
51	Costimulation Engages the Gear in Driving CARs. Immunity, 2016, 44, 214-216.	14.3	17
52	Jade-1S phosphorylation induced by CK1α contributes to cell cycle progression. Cell Cycle, 2016, 15, 1034-1045.	2.6	9
53	Endogenous II10 Alleviates the Systemic Antiviral Cellular Immune Response and T Cell–Mediated Immunopathology in Select Organs of Acutely LCMV-Infected Mice. American Journal of Pathology, 2015, 185, 3025-3038.	3.8	5
54	TRUCKs: the fourth generation of CARs. Expert Opinion on Biological Therapy, 2015, 15, 1145-1154.	3.1	473

#	Article	IF	CITATIONS
55	Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Engineering, Design and Selection, 2015, 28, 93-106.	2.1	23
56	Analysis of the functional <scp>WT</scp> 1â€specific Tâ€cell repertoire in healthy donors reveals a discrepancy between <scp>CD</scp> 4 ⁺ and <scp>CD</scp> 8 ⁺ memory formation. Immunology, 2015, 145, 558-569.	4.4	21
57	Stability and activity of MCSP-specific chimeric antigen receptors (CARs) depend on the scFv antigen-binding domain and the protein backbone. Cancer Immunology, Immunotherapy, 2015, 64, 1623-1635.	4.2	39
58	Cancer gene therapy with T cell receptors and chimeric antigen receptors. Current Opinion in Pharmacology, 2015, 24, 113-118.	3.5	30
59	Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer. Journal of the National Cancer Institute, 2015, 107, 364.	6.3	34
60	Gene Transfer into T Cells. , 2014, , 19-48.		0
61	T-Bodies: Antibody-Based Engineered T-Cell Receptors. , 2014, , 83-129.		Ο
62	Of <scp>CAR</scp> s and <scp>TRUCK</scp> s: chimeric antigen receptor (<scp>CAR</scp>) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological Reviews, 2014, 257, 83-90.	6.0	275
63	Efficacy of CAR T-cell Therapy in Large Tumors Relies upon Stromal Targeting by IFNγ. Cancer Research, 2014, 74, 6796-6805.	0.9	70
64	Arming Cytokine-induced Killer Cells With Chimeric Antigen Receptors: CD28 Outperforms Combined CD28–OX40 "Super-stimulation― Molecular Therapy, 2013, 21, 2268-2277.	8.2	85
65	Adoptive Immunotherapy with Redirected T Cells Produces CCR7 ^{â^'} Cells That Are Trapped in the Periphery and Benefit from Combined CD28-OX40 Costimulation. Human Gene Therapy, 2013, 24, 259-269.	2.7	49
66	T Cells Expressing a Chimeric Antigen Receptor That Binds Hepatitis BÂVirus Envelope Proteins Control Virus Replication in Mice. Gastroenterology, 2013, 145, 456-465.	1.3	180
67	Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells. Clinical and Developmental Immunology, 2012, 2012, 1-8.	3.3	37
68	Engineered T Cells for the Adoptive Therapy of B-Cell Chronic Lymphocytic Leukaemia. Advances in Hematology, 2012, 2012, 1-13.	1.0	18
69	CAR T cells transform to trucks: chimeric antigen receptor–redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunology, Immunotherapy, 2012, 61, 1269-1277.	4.2	99
70	T Cells That Target Carcinoembryonic Antigen Eradicate Orthotopic Pancreatic Carcinomas Without Inducing Autoimmune Colitis in Mice. Gastroenterology, 2012, 143, 1095-1107.e2.	1.3	113
71	Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28â€OX40 signalling. International Journal of Cancer, 2011, 129, 2935-2944.	5.1	130
72	IL-12 Release by Engineered T Cells Expressing Chimeric Antigen Receptors Can Effectively Muster an Antigen-Independent Macrophage Response on Tumor Cells That Have Shut Down Tumor Antigen Expression. Cancer Research, 2011, 71, 5697-5706.	0.9	417

#	Article	IF	CITATIONS
73	CD28 Costimulation Impairs the Efficacy of a Redirected T-cell Antitumor Attack in the Presence of Regulatory T cells Which Can Be Overcome by Preventing Lck Activation. Molecular Therapy, 2011, 19, 760-767.	8.2	106
74	T Cells Engineered with a Cytomegalovirus-Specific Chimeric Immunoreceptor. Journal of Virology, 2010, 84, 4083-4088.	3.4	39
75	The Proteasome Inhibitor Bortezomib Sensitizes Melanoma Cells toward Adoptive CTL Attack. Cancer Research, 2010, 70, 1825-1834.	0.9	53
76	Rational development of high-affinity T-cell receptor-like antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5784-5788.	7.1	109
77	Engineering antigen-specific primary human NK cells against HER-2 positive carcinomas. Proceedings of the United States of America, 2008, 105, 17481-17486.	7.1	177
78	T Cell Activation by Antibody-Like Immunoreceptors: The Position of the Binding Epitope within the Target Molecule Determines the Efficiency of Activation of Redirected T Cells. Journal of Immunology, 2007, 178, 4650-4657.	0.8	92
79	CD28 Costimulation Overcomes Transforming Growth Factor-β–Mediated Repression of Proliferation of Redirected Human CD4+ and CD8+ T Cells in an Antitumor Cell Attack. Cancer Research, 2007, 67, 2265-2273.	0.9	83
80	Epstein Barr virus–specific cytotoxic T lymphocytes expressing the anti-CD30ζ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood, 2007, 110, 2620-2630.	1.4	227
81	Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunology, Immunotherapy, 2007, 56, 731-737.	4.2	39
82	XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood, 2006, 108, 3434-3440.	1.4	67
83	T Cell Activation by Antibody-Like Immunoreceptors: Increase in Affinity of the Single-Chain Fragment Domain above Threshold Does Not Increase T Cell Activation against Antigen-Positive Target Cells but Decreases Selectivity. Journal of Immunology, 2004, 173, 7647-7653.	0.8	237
84	Anti-CD30-IL-12 antibody-cytokine fusion protein that induces IFN-? secretion of T cells and NK cell-mediated lysis of Hodgkin's lymphoma-derived tumor cells. International Journal of Cancer, 2003, 106, 545-552.	5.1	24
85	Tuning tumor-specific T-cell activation: a matter of costimulation?. Trends in Immunology, 2002, 23, 240-245.	6.8	76
86	Tumor-Specific T Cell Activation by Recombinant Immunoreceptors: CD3ζ Signaling and CD28 Costimulation Are Simultaneously Required for Efficient IL-2 Secretion and Can Be Integrated Into One Combined CD28/CD3ζ Signaling Receptor Molecule. Journal of Immunology, 2001, 167, 6123-6131.	0.8	268
87	An entirely humanized CD3 ζ-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. International Journal of Cancer, 2000, 88, 115-120.	5.1	55
88	CD4+ CD7- T cells: a separate subpopulation of memory T cells?. Journal of Clinical Immunology, 1997, 17, 265-271.	3.8	57