
Teresa Zalewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4455449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant Complement System Activation in Neurological Disorders. International Journal of Molecular Sciences, 2021, 22, 4675.	1.8	23
2	The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells, 2020, 9, 2277.	1.8	98
3	Oligodendrocyte Response to Pathophysiological Conditions Triggered by Episode of Perinatal Hypoxia-Ischemia: Role of IGF-1 Secretion by Glial Cells. Molecular Neurobiology, 2020, 57, 4250-4268.	1.9	21
4	Impact of a Histone Deacetylase Inhibitor—Trichostatin A on Neurogenesis after Hypoxia-Ischemia in Immature Rats. International Journal of Molecular Sciences, 2020, 21, 3808.	1.8	11
5	Effect of the HDAC Inhibitor, Sodium Butyrate, on Neurogenesis in a Rat Model of Neonatal Hypoxia–Ischemia: Potential Mechanism of Action. Molecular Neurobiology, 2019, 56, 6341-6370.	1.9	61
6	Directed glial differentiation and transdifferentiation for neural tissue regeneration. Experimental Neurology, 2019, 319, 112813.	2.0	22
7	Impact of neonatal hypoxiaâ€ischaemia on oligodendrocyte survival, maturation and myelinating potential. Journal of Cellular and Molecular Medicine, 2018, 22, 207-222.	1.6	25
8	Histone Deacetylase Inhibitors: A Therapeutic Key in Neurological Disorders?. Journal of Neuropathology and Experimental Neurology, 2018, 77, 855-870.	0.9	38
9	A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1442-1455.	1.3	8
10	The potential neuroprotective role of a histone deacetylase inhibitor, sodium butyrate, after neonatal hypoxia-ischemia. Journal of Neuroinflammation, 2017, 14, 34.	3.1	56
11	Insights Into the Neuroinflammatory Responses After Neonatal Hypoxia-Ischemia. Journal of Neuropathology and Experimental Neurology, 2017, 76, 644-654.	0.9	83
12	Sodium Butyrate, a Histone Deacetylase Inhibitor, Exhibits Neuroprotective/Neurogenic Effects in a Rat Model of Neonatal Hypoxia-Ischemia. Molecular Neurobiology, 2017, 54, 5300-5318.	1.9	50
13	Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Molecular Neurobiology, 2016, 53, 6413-6425.	1.9	17
14	Imipramine administration induces changes in the phosphorylation of FAK and PYK2 and modulates signaling pathways related to their activity. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 424-433.	1.1	3
15	Histone deacetylases 1 and 2 are required for brain development. International Journal of Developmental Biology, 2015, 59, 171-177.	0.3	31
16	OGD induced modification of FAK- and PYK2-coupled pathways in organotypic hippocampal slice cultures. Brain Research, 2015, 1606, 21-33.	1.1	3
17	Current and Experimental Pharmacological Approaches in Neonatal Hypoxic- Ischemic Encephalopathy. Current Pharmaceutical Design, 2015, 21, 1433-1439.	0.9	18
18	Neuroprotective effects of histone deacetylase inhibitors in brain ischemia. Acta Neurobiologiae Experimentalis, 2014, 74, 383-95.	0.4	10

TERESA ZALEWSKA

#	Article	IF	CITATIONS
19	Functional alterations in endothelial NO, PGI2 and EDHF pathways in aorta in ApoE/LDLRâ^'/â^' mice. Prostaglandins and Other Lipid Mediators, 2012, 98, 107-115.	1.0	49
20	The Potential Role of Metalloproteinases in Neurogenesis in the Gerbil Hippocampus Following Global Forebrain Ischemia. PLoS ONE, 2011, 6, e22465.	1.1	28
21	Transient forebrain ischemia effects FAK-coupled signaling in gerbil hippocampus. Neurochemistry International, 2007, 51, 405-411.	1.9	9
22	Transient forebrain ischemia effects interaction of Src, FAK, and PYK2 with the NR2B subunit of N-methyl-d-aspartate receptor in gerbil hippocampus. Brain Research, 2005, 1042, 214-223.	1.1	26
23	Neonatal cerebral hypoxiaâ€ischemia: involvement of FAKâ€dependent pathway. International Journal of Developmental Neuroscience, 2005, 23, 657-662.	0.7	16
24	Effect of phosphatidylinositol and inside-out erythrocyte vesicles on autolysis of μ- and m-calpain from bovine skeletal muscle. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1693, 125-133.	1.9	13
25	Transient forebrain ischemia modulates signal transduction from extracellular matrix in gerbil hippocampus. Brain Research, 2003, 977, 62-69.	1.1	36
26	Involvement of MMPs in delayed neuronal death after global ischemia. Acta Neurobiologiae Experimentalis, 2002, 62, 53-61.	0.4	12
27	Expression of Ca2+-dependent (classical) PKC mRNA isoforms after transient cerebral ischemia in gerbil hippocampus. Brain Research, 1998, 779, 254-258.	1.1	16
28	Cyclic Enkephalin Analogues with Exceptional Potency and Selectivity for δ-Opioid Receptors1. Journal of Medicinal Chemistry, 1997, 40, 3957-3962.	2.9	42
29	Probing the Stereochemical Requirements for Receptor Recognition of δ Opioid Agonists through Topographic Modifications in Position 1. Journal of the American Chemical Society, 1996, 118, 7280-7290.	6.6	63
30	The Use of Topographical Constraints In Receptor Mapping:Â Investigation of the Topographical Requirements of the Tryptophan 30 Residue for Receptor Binding of Asp-Tyr-d-Phe-Gly-Trp-(N-Me)Nle-Asp-Phe-NH2(SNF 9007), a Cholecystokinin (26â^'33) Analogue That Binds to both CCK-B and δ-Opioid Receptorsâ€. Journal of Medicinal Chemistry, 1996, 39, 4120-4124.	2.9	15
31	Autophosphorylation as a possible mechanism of calcium/calmodulin-dependent protein kinase II inhibition during ischemia. Neurochemistry International, 1996, 28, 175-181.	1.9	7
32	δ-Opioid receptor: the third extracellular loop determines naltrindole selectivity. European Journal of Pharmacology, 1996, 300, R1-R2.	1.7	18
33	Brain ischaemia transiently activates Ca2+/calmodulin-independent protein kinase II. NeuroReport, 1996, 7, 637-641.	0.6	20
34	[N-methylnorleucine-(28,31)]cholecystokinin-(26–33) (SNF 8702) activity at a cloned rat CCKB receptor. European Journal of Pharmacology, 1994, 269, 133-138.	2.7	1
35	[3H] SNF 8702 Autoradiography of CCK-B Receptors in Guinea Pig Brain and Studies with a Cloned Rat CCK-B Receptor. Annals of the New York Academy of Sciences, 1994, 713, 380-383.	1.8	1
36	Cyclic enkephalin analogs with exceptional potency at peripheral .delta. opioid receptors. Journal of Medicinal Chemistry, 1994, 37, 146-150.	2.9	24

Teresa Zalewska

#	Article	IF	CITATIONS
37	Newly discovered stereochemical requirements in the side-chain conformation of .delta. opioid agonists for recognizing opioid .delta. receptors. Journal of Medicinal Chemistry, 1994, 37, 1746-1757.	2.9	60
38	[L-Ala3]DPDPE: A New Enkephalin Analog with a Unique Opioid Receptor Activity Profile. Further Evidence of .deltaOpioid Receptor Multiplicity. Journal of Medicinal Chemistry, 1994, 37, 1572-1577.	2.9	20
39	Design, Synthesis, and Biological Properties of highly Potent Cyclic Dynorphin A Analogs. Analogs Cyclized between Positions 5 and 11. Journal of Medicinal Chemistry, 1994, 37, 3910-3917.	2.9	32
40	Tryptophan-norleucine 1,5-disubstituted tetrazoles as cis peptide bond mimics: Investigation of the bioactive conformation of a potent and selective peptide for the cholecystokinin-B receptor. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 2011-2016.	1.0	9
41	Coupling of adenosine receptors to adenylate cyclase in postischemic rat brain. Cellular Signalling, 1993, 5, 337-343.	1.7	12
42	Syntheses, opioid binding affinities, and potencies of dynorphin A analogues substituted in positions 1, 6, 7, 8 and 10. International Journal of Peptide and Protein Research, 1993, 42, 411-419.	0.1	32
43	Effect of Brain Ischemia on Protein Kinase C. Journal of Neurochemistry, 1992, 58, 1432-1439.	2.1	76
44	Calcium-activated neutral protease (CANP) in normal and dysmyelinating mutant paralytic tremor rabbit myelin. Molecular and Chemical Neuropathology, 1992, 16, 273-288.	1.0	11
45	Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin?. BioEssays, 1992, 14, 549-556.	1.2	223
46	A calcium-activated neutral protease in the frog nervous system which degrades rapidly transported axonal proteins. Brain Research, 1986, 381, 58-62.	1.1	12
47	Effects of anoxia and depolarization on the movement of carbon atoms derived from glucose into macromolecular fractions in rat brain slices. Journal of Neuroscience Research, 1979, 4, 247-260.	1.3	7
48	Energy utilization and changes in some intermediates of glucose metabolism in normal and hypoxic rat brain after decapitation. Resuscitation, 1979, 7, 199-206.	1.3	10
49	Arterial acid-base changes and brain energy metabolism in unanaesthetized rats in mild hypoxia. Resuscitation, 1979, 7, 207-214.	1.3	3
50	Effect of hypoxia and ischemia on the distribution of protein in brain cellular fractions. Neurochemical Research, 1979, 4, 15-23.	1.6	5
51	THE EFFECT OF ISCHAEMIA AND RECIRCULATION ON PROTEIN SYNTHESIS IN THE RAT BRAIN. Journal of Neurochemistry, 1977, 28, 929-934.	2.1	222