Natasa Skalko-Basnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4455133/publications.pdf

Version: 2024-02-01

113	5,020	38	66
papers	citations	h-index	g-index
116	116	116	6331 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Curcumin: An Anti-Inflammatory Molecule from a Curry Spice on the Path to Cancer Treatment. Molecules, 2011, 16, 4567-4598.	1.7	570
2	Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. Journal of Applied Polymer Science, 2012, 125, 180-188.	1.3	183
3	Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. European Journal of Pharmaceutical Sciences, 2019, 138, 105026.	1.9	163
4	In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences, 2015, 75, 10-24.	1.9	162
5	Liposomal gels for vaginal drug delivery. International Journal of Pharmaceutics, 2001, 219, 139-149.	2.6	160
6	Wound healing properties of Carica papaya latex: In vivo evaluation in mice burn model. Journal of Ethnopharmacology, 2009, 121, 338-341.	2.0	152
7	Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. Journal of Controlled Release, 2005, 106, 34-43.	4.8	134
8	Mucoadhesive chitosan-coated liposomes: characteristics and stability. Journal of Microencapsulation, 2001, 18, 3-12.	1.2	133
9	Liposomal Delivery System Enhances Anti-Inflammatory Properties of Curcumin. Journal of Pharmaceutical Sciences, 2012, 101, 598-609.	1.6	124
10	Mucoadhesive liposomal delivery systems: the choice of coating material. Drug Development and Industrial Pharmacy, 2011, 37, 482-488.	0.9	117
11	Nanopharmaceuticals for improved topical vaginal therapy: Can they deliver?. European Journal of Pharmaceutical Sciences, 2013, 50, 29-41.	1.9	100
12	Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. European Journal of Pharmaceutical Sciences, 2015, 79, 112-121.	1.9	98
13	Chitosan-coated liposomes for topical vaginal therapy: Assuring localized drug effect. International Journal of Pharmaceutics, 2014, 472, 94-101.	2.6	95
14	Characterisation and in vitro evaluation of bioadhesive liposome gels for local therapy of vaginitis. International Journal of Pharmaceutics, 2005, 301, 140-148.	2.6	87
15	Potentials of Chitosan-Based Delivery Systems in Wound Therapy: Bioadhesion Study. Journal of Functional Biomaterials, 2012, 3, 37-48.	1.8	76
16	Enterococcus faecium produces membrane vesicles containing virulence factors and antimicrobial resistance related proteins. Journal of Proteomics, 2018, 187, 28-38.	1.2	74
17	Improved Burns Therapy: Liposomesâ€inâ€Hydrogel Delivery System for Mupirocin. Journal of Pharmaceutical Sciences, 2012, 101, 3906-3915.	1.6	68
18	Mucoadhesive liposomes as new formulation for vaginal delivery of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 40-46.	2.0	68

#	Article	IF	Citations
19	Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel. Journal of Liposome Research, 2014, 24, 27-36.	1.5	64
20	Liposomes Containing Drug and Cyclodextrin Prepared by the One-Step Spray-Drying Method. Drug Development and Industrial Pharmacy, 2000, 26, 1279-1284.	0.9	63
21	Biologics: the role of delivery systems in improved therapy. Biologics: Targets and Therapy, 2014, 8, 107.	3.0	63
22	PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 132-139.	2.0	63
23	Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: <i>in vitro</i> tyrosinase inhibition. International Journal of Cosmetic Science, 2008, 30, 353-360.	1.2	62
24	Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes. International Journal of Pharmaceutics, 1996, 135, 183-190.	2.6	61
25	Solubilization of ibuprofen with \hat{l}^2 -cyclodextrin derivatives: Energetic and structural studies. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 446-451.	1.4	56
26	Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. European Journal of Pharmaceutical Sciences, 2018, 121, 269-280.	1.9	56
27	Antioxidant activity and polyphenol content in edible wild fruits from Nepal. International Journal of Food Sciences and Nutrition, 2010, 61, 425-432.	1.3	54
28	The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel. International Journal of Pharmaceutics, 2013, 456, 49-57.	2.6	53
29	Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy. Marine Drugs, 2015, 13, 222-236.	2.2	51
30	Liposomes with clindamycin hydrochloride in the therapy of acne vulgaris. International Journal of Pharmaceutics, 1992, 85, 97-101.	2.6	50
31	Localized Therapy of Vaginal Infections and Inflammation: Liposomes-In-Hydrogel Delivery System for Polyphenols. Pharmaceutics, 2019, 11, 53.	2.0	48
32	Curcumin-In-Deformable Liposomes-In-Chitosan-Hydrogel as a Novel Wound Dressing. Pharmaceutics, 2020, 12, 8.	2.0	47
33	Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetrical and plasma stability comparison. European Journal of Pharmaceutical Sciences, 1996, 4, 359-366.	1.9	45
34	Chitosan-Based Nanomedicine to Fight Genital Candida Infections: Chitosomes. Marine Drugs, 2017, 15, 64.	2.2	45
35	Liposomes containing drugs for treatment of vaginal infections. European Journal of Pharmaceutical Sciences, 1999, 8, 345-351.	1.9	44
36	Liposomes augment biological benefits of curcumin for multitargeted skin therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 154-164.	2.0	44

#	Article	IF	Citations
37	Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing $\hat{a} \in \text{``Development and in-vivo evaluation. European Journal of Pharmaceutical Sciences, 2017, 107, 24-31.}$	1.9	43
38	Characterization of various deformable liposomes with metronidazole. Drug Development and Industrial Pharmacy, 2013, 39, 481-488.	0.9	42
39	Mucoadhesive buccal films based on a graft co-polymer – A mucin-retentive hydrogel scaffold. European Journal of Pharmaceutical Sciences, 2020, 142, 105142.	1.9	42
40	Liposomes-in-chitosan hydrogel boosts potential of chlorhexidine in biofilm eradication in vitro. Carbohydrate Polymers, 2021, 262, 117939.	5.1	42
41	Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. Journal of Controlled Release, 2020, 324, 620-632.	4.8	40
42	Utilizing Liposomal Quercetin and Gallic Acid in Localized Treatment of Vaginal Candida Infections. Pharmaceutics, 2020, 12, 9.	2.0	38
43	Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel <i>in vitro stratum corneum</i> model in formulation development. Journal of Liposome Research, 2014, 24, 313-322.	1.5	37
44	Liposomes with Metronidazole for Topical Use: The Choice of Preparation Method and Vehicle. Journal of Liposome Research, 1998, 8, 283-293.	1.5	36
45	Liposomes-in-Hydrogel Delivery System with Mupirocin: <i>In Vitro</i> Antibiofilm Studies and <i>In Vivo</i> Evaluation in Mice Burn Model. BioMed Research International, 2013, 2013, 1-8.	0.9	36
46	Old drug, new wrapping \hat{a} A possible comeback for chloramphenicol?. International Journal of Pharmaceutics, 2017, 526, 538-546.	2.6	36
47	<p>Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections</p> . International Journal of Nanomedicine, 2019, Volume 14, 5957-5976.	3.3	35
48	Pectosomes and Chitosomes as Delivery Systems for Metronidazole: The One-Pot Preparation Method. Pharmaceutics, 2013, 5, 445-456.	2.0	34
49	Mucus-PVPA (mucus Phospholipid Vesicle-based Permeation Assay): An artificial permeability tool for drug screening and formulation development. International Journal of Pharmaceutics, 2018, 537, 213-222.	2.6	34
50	Morphological observations on liposomes bearing covalently bound protein: Studies with freeze-fracture and cryo electron microscopy and small angle X-ray scattering techniques. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1370, 151-160.	1.4	33
51	Development and Evaluation of an In Vitro Vaginal Model for Assessment of Drug's Biopharmaceutical Properties: Curcumin. AAPS PharmSciTech, 2012, 13, 1045-1053.	1.5	33
52	New Applications of Phospholipid Vesicle-Based Permeation Assay: Permeation Model Mimicking Skin Barrier. Journal of Pharmaceutical Sciences, 2013, 102, 1588-1600.	1.6	33
53	Improved Permeability of Acyclovir: Optimization of Mucoadhesive Liposomes Using the Phospholipid Vesicle-Based Permeation Assay. Journal of Pharmaceutical Sciences, 2014, 103, 661-668.	1.6	33
54	A Non-Ionic Surfactant Vesicle - in - Water - in - Oil ($v/w/o$) System: Potential Uses in Drug and Vaccine Delivery. Journal of Drug Targeting, 1995, 2, 533-539.	2.1	31

#	Article	IF	CITATIONS
55	Phospholipid Vesicle-Based Permeation Assay and EpiSkin® in Assessment of Drug Therapies Destined for Skin Administration. Journal of Pharmaceutical Sciences, 2015, 104, 1119-1127.	1.6	31
56	(Phospho)lipid-based Nanosystems for Skin Administration. Current Pharmaceutical Design, 2015, 21, 4174-4192.	0.9	30
57	Successful co-encapsulation of benzoyl peroxide and chloramphenicol in liposomes by a novel manufacturing method - dual asymmetric centrifugation. European Journal of Pharmaceutical Sciences, 2017, 97, 192-199.	1.9	29
58	Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. European Journal of Pharmaceutical Sciences, 2018, 125, 163-171.	1.9	29
59	Following the Fate of Dye-Containing Liposomes In Vitro. International Journal of Molecular Sciences, 2020, 21, 4847.	1.8	29
60	The Antimicrobial Properties of Chitosan Can Be Tailored by Formulation. Marine Drugs, 2020, 18, 96.	2.2	28
61	Chitosomes-In-Chitosan Hydrogel for Acute Skin Injuries: Prevention and Infection Control. Marine Drugs, 2021, 19, 269.	2.2	27
62	High-Performance Liquid Chromatography Analysis of Capsaicin Content in 16 <i>Capsicum</i> from Nepal. Journal of Medicinal Food, 2009, 12, 908-913.	0.8	26
63	Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anticancer activity: a screening method to identify maximum incorporation capacity. Journal of Liposome Research, 2011, 21, 272-278.	1.5	26
64	Liposomal gel with chloramphenicol: characterisation and in vitro release. Acta Pharmaceutica, 2004, 54, 319-30.	0.9	26
65	Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 411-418.	2.0	25
66	Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics, 2020, 12, 1203.	2.0	25
67	Stability of amlodipine besylate and atenolol in multi-component tablets of mono-layer and bi-layer types. Acta Pharmaceutica, 2008, 58, 299-308.	0.9	22
68	Development of Suberin Fatty Acids and Chloramphenicol-Loaded Antimicrobial Electrospun Nanofibrous Mats Intended for Wound Therapy. Journal of Pharmaceutical Sciences, 2016, 105, 1239-1247.	1.6	22
69	Tablets of pre-liposomes govern in situ formation of liposomes: Concept and potential of the novel drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 443-454.	2.0	21
70	Mucosal nanosystems for improved topical drug delivery: vaginal route of administration. Journal of Drug Delivery Science and Technology, 2014, 24, 435-444.	1.4	20
71	Secretomic analysis of extracellular vesicles originating from polyomavirusâ€negative and polyomavirusâ€positive Merkel cell carcinoma cell lines. Proteomics, 2016, 16, 2587-2591.	1.3	20
72	pH-sensitive liposomes for receptor-mediated delivery to chicken hepatoma (LMH) cells. FEBS Letters, 1998, 434, 351-356.	1.3	19

#	Article	IF	CITATIONS
73	Nanodelivery Systems for Improved Topical Antimicrobial Therapy. Current Pharmaceutical Design, 2013, 19, 7237-7243.	0.9	19
74	Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation. Drug Development and Industrial Pharmacy, 2016, 42, 1375-1383.	0.9	19
75	The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Marine Drugs, 2021, 19, 697.	2.2	19
76	Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Advanced Drug Delivery Reviews, 2021, 178, 113855.	6.6	18
77	The effect of microfluidization of protein-coated liposomes on protein distribution on the surface of generated small vesicles. Lipids and Lipid Metabolism, 1996, 1301, 249-254.	2.6	17
78	Overcoming instability and low solubility of new cytostatic compounds: A comparison of two approaches. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 657-662.	2.0	17
79	Liposomal Gels for Vaginal Drug Delivery. Methods in Enzymology, 2004, 387, 287-299.	0.4	16
80	The Vaginal-PVPA: A Vaginal Mucosa-Mimicking In Vitro Permeation Tool for Evaluation of Mucoadhesive Formulations. Pharmaceutics, 2020, 12, 568.	2.0	16
81	<i>In vitro</i> models to estimate drug penetration through the compromised <i>stratum corneum</i> barrier. Drug Development and Industrial Pharmacy, 2016, 42, 1742-1751.	0.9	15
82	Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget, 2017, 8, 76921-76934.	0.8	15
83	Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 121, 14-23.	2.0	14
84	The isolated perfused human skin flap model: A missing link in skin penetration studies?. European Journal of Pharmaceutical Sciences, 2017, 96, 334-341.	1.9	14
85	Dual Centrifugation - A Novel "in-vial―Liposome Processing Technique. , 0, , .		14
86	Uptake of Liposomally Entrapped Fluorescent Antisense Oligonucleotides in NG108-15 Cells: Conventional versus pH-Sensitive Biological and Pharmaceutical Bulletin, 2002, 25, 1583-1587.	0.6	13
87	Elastic liposomes-in-vehicle formulations destined for skin therapy: the synergy between type of liposomes and vehicle. Drug Development and Industrial Pharmacy, 2015, 41, 1247-1253.	0.9	13
88	Delivery of antisense oligonucleotides to neuroblastoma cells. NeuroReport, 2000, 11, 3117-3121.	0.6	12
89	Multifunctional Nanofibrous Dressing with Antimicrobial and Anti-Inflammatory Properties Prepared by Needle-Free Electrospinning. Pharmaceutics, 2021, 13, 1527.	2.0	11
90	The Association of Plain and Ligand-Bearing Neutral and Ph-Sensitive Liposomes with Various Cells. Journal of Liposome Research, 2000, 10, 43-59.	1.5	10

#	Article	IF	CITATIONS
91	The Hypotonic Environmental Changes Affect Liposomal Formulations for Nose-to-Brain Targeted Drug Delivery. Journal of Pharmaceutical Sciences, 2019, 108, 2570-2579.	1.6	10
92	Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules, 2022, 23, 303-315.	2.6	10
93	Development of a novel beta-glucan supplemented hydrogel spray formulation and wound healing efficacy in a db/db diabetic mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 280-291.	2.0	9
94	Influence of the environmental tonicity perturbations on the release of model compounds from large unilamellar vesicles (LUVs): A mechanistic investigation. Colloids and Surfaces B: Biointerfaces, 2017, 157, 65-71.	2.5	8
95	Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics, 2020, 12, 643.	2.0	8
96	Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics, 2021, 13, 590.	2.0	8
97	The influence of ethnic origin on the skin photoageing: Nepalese study. International Journal of Cosmetic Science, 2011, 33, 553-559.	1.2	7
98	Drug loading to mesoporous silica carriers by solvent evaporation: A comparative study of amorphization capacity and release kinetics. International Journal of Pharmaceutics, 2021, 607, 120982.	2.6	7
99	Lipid-Based Nanopharmaceuticals in Antimicrobial Therapy. , 2017, , 111-152.		5
100	Electrospun Amphiphilic Nanofibers as Templates for In Situ Preparation of Chloramphenicol-Loaded Liposomes. Pharmaceutics, 2021, 13, 1742.	2.0	5
101	The pH-Responsive Liposomesâ€"The Effect of PEGylation on Release Kinetics and Cellular Uptake in Glioblastoma Cells. Pharmaceutics, 2022, 14, 1125.	2.0	5
102	Curcumin: A Challenge in Cancer Treatment. Journal of Nepal Pharmaceutical Association, 2012, 26, 19-47.	0.5	3
103	Topical Delivery System for Phytochemicals: Capsaicin and Capsicum Tincture. Journal of Pharmaceutics and Drug Development, 2014, 1, .	0.1	3
104	Toxicity Assessment of Resveratrol Liposomes-in-Hydrogel Delivery System by EpiVaginalTM Tissue Model. Pharmaceutics, 2022, 14, 1295.	2.0	3
105	Nanoformulations for Vaginal Therapy. , 2017, , 183-221.		2
106	Molecular transfer to Atlantic salmon ovulated eggs using liposomes. Aquaculture, 2017, 479, 404-411.	1.7	2
107	Hydrogels as intrinsic antimicrobials. , 2020, , 309-328.		2
108	PP072. Development of polyphenols-containing nanoparticles for the treatment of vaginal inflammation. Pregnancy Hypertension, 2013, 3, 93-94.	0.6	1

#	Article	IF	CITATIONS
109	Cell-based in vitro models for vaginal permeability studies. , 2016, , 115-128.		1
110	Multi-moded high-index contrast optical waveguide for super-contrast high-resolution label-free microscopy. Nanophotonics, 2022, 11, 3421-3436.	2.9	1
111	Novel in situ gel-forming solid dosage form (gfSDF) prepared by the simple syringe-based moulding: A screening study. European Journal of Pharmaceutical Sciences, 2017, 105, 11-18.	1.9	O
112	Hydrogels for Vaginal Drug Delivery. , 2017, , 259-302.		0
113	Hydrogels for Vaginal Drug Delivery. , 2017, , 259-302.		O