Jun Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4454786/jun-xu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	1,497	14	38
papers	citations	h-index	g-index
44	2,032 ext. citations	13.9	4.5
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
35	Direct lineage reprogramming: strategies, mechanisms, and applications. <i>Cell Stem Cell</i> , 2015 , 16, 119-3	4 18	275
34	Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons. <i>Cell Stem Cell</i> , 2015 , 17, 195-203	18	274
33	Derivation of Pluripotent Stem Cells with In[Vivo Embryonic and Extraembryonic Potency. <i>Cell</i> , 2017 , 169, 243-257.e25	56.2	237
32	CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. <i>New England Journal of Medicine</i> , 2019 , 381, 1240-1247	59.2	187
31	Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. <i>Cell Stem Cell</i> , 2014 , 15, 488-497	18	83
30	Long-term functional maintenance of primary human hepatocytes in vitro. <i>Science</i> , 2019 , 364, 399-402	33.3	82
29	5-Aminosalicylic Acid Alters the Gut Bacterial Microbiota in Patients With Ulcerative Colitis. <i>Frontiers in Microbiology</i> , 2018 , 9, 1274	5.7	58
28	Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State. <i>Cell Stem Cell</i> , 2017 , 21, 264-273.e7	18	55
27	Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. <i>Cell Discovery</i> , 2015 , 1, 15040	22.3	37
26	A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. <i>Cell Research</i> , 2019 , 29, 696-710	24.7	25
25	Biochar drives microbially-mediated rice production by increasing soil carbon. <i>Journal of Hazardous Materials</i> , 2020 , 387, 121680	12.8	23
24	Small molecule-induced cellular fate reprogramming: promising road leading to Rome. <i>Current Opinion in Genetics and Development</i> , 2018 , 52, 29-35	4.9	18
23	Changes of intestinal bacterial microbiota in coronary heart disease complicated with nonalcoholic fatty liver disease. <i>BMC Genomics</i> , 2019 , 20, 862	4.5	16
22	Influence of occlusal contact and cusp inclination on the biomechanical character of a maxillary premolar: a finite element analysis. <i>Journal of Prosthetic Dentistry</i> , 2014 , 112, 1238-45	4	15
21	Mesenteric adipose tissue B lymphocytes promote local and hepatic inflammation in non-alcoholic fatty liver disease mice. <i>Journal of Cellular and Molecular Medicine</i> , 2019 , 23, 3375-3385	5.6	14
20	Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration. <i>Cell Research</i> , 2021 , 31, 259-271	24.7	13
19	In vivo chemical reprogramming of astrocytes into neurons. <i>Cell Discovery</i> , 2021 , 7, 12	22.3	12

18	Mesenteric lymph node CD4 T lymphocytes migrate to liver and contribute to non-alcoholic fatty liver disease. <i>Cellular Immunology</i> , 2019 , 337, 33-41	4.4	11
17	Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 315, G659-G670	5.1	9
16	Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. <i>Protein and Cell</i> , 2019 , 10, 20-30	7.2	9
15	Bacterial Alterations in Post-Cholecystectomy Patients Are Associated With Colorectal Cancer. <i>Frontiers in Oncology</i> , 2020 , 10, 1418	5.3	9
14	Generation of human hepatocytes from extended pluripotent stem cells. Cell Research, 2020, 30, 810-8	13 4.7	8
13	Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg mice. <i>Protein and Cell</i> , 2019 , 10, 31-42	7.2	4
12	Gut-Liver Axis: Liver Sinusoidal Endothelial Cells Function as the Hepatic Barrier in Colitis-Induced Liver Injury. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 702890	5.7	4
11	NF73-1 Isolated From NASH Patients Aggravates NAFLD in Mice by Translocating Into the Liver and Stimulating M1 Polarization. <i>Frontiers in Cellular and Infection Microbiology</i> , 2020 , 10, 535940	5.9	3
10	Injectable Porous Microchips with Oxygen Reservoirs and an Immune-Niche Enhance the Efficacy of CAR T Cell Therapy in Solid Tumors. <i>ACS Applied Materials & District Materials &</i>	9.5	3
9	Derivation of totipotent-like stem cells with blastocyst-like structure forming potential <i>Cell Research</i> , 2022 ,	24.7	3
8	Changes and roles of intestinal fungal microbiota in coronary heart disease complicated with nonalcoholic fatty liver disease. <i>American Journal of Translational Research (discontinued)</i> , 2020 , 12, 344	15 ² 3460	0 ²
7	Screening of Organophosphate Flame Retardants with Placentation-Disrupting Effects in Human Trophoblast Organoid Model and Characterization of Adverse Pregnancy Outcomes in Mice <i>Environmental Health Perspectives</i> , 2022 , 130, 57002	8.4	2
6	Dialogue between gastrointestinal tract and skin: New insights into the Helicobacter pylori and atopic dermatitis. <i>Helicobacter</i> , 2021 , 26, e12771	4.9	1
5	Chemically defined and xeno-free culture condition for human extended pluripotent stem cells. <i>Nature Communications</i> , 2021 , 12, 3017	17.4	1
4	Modification of Intestinal Microbiota Dysbiosis by Low-Dose Interleukin-2 in Dermatomyositis: A Analysis From a Clinical Trial Study <i>Frontiers in Cellular and Infection Microbiology</i> , 2022 , 12, 757099	5.9	1
3	The role of genotype and diet in shaping gut microbiome in a genetic vitamin A deficient mouse model. <i>Journal of Genetics and Genomics</i> , 2021 , 49, 155-155	4	O
2	The Gut Microbial Signature of Gestational Diabetes Mellitus and the Association With Diet Intervention <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 800865	5.9	0
1	The Spatial Landscape of the Bacterial Community and Bile Acids in the Digestive Tract of Patients With Bile Reflux <i>Frontiers in Microbiology</i> , 2022 , 13, 835310	5.7	O