
Roger Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4454584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mathematical model to predict railway wheel profile evolution due to wear. Wear, 2006, 261, 1253-1264.	1.5	257
2	Mapping rail wear regimes and transitions. Wear, 2004, 257, 721-729.	1.5	200
3	Twin disc assessment of wheel/rail adhesion. Wear, 2008, 265, 1309-1316.	1.5	149
4	Wheel—rail interface handbook. , 2009, , .		117
5	Assessment of laser cladding as an option for repairing/enhancing rails. Wear, 2015, 330-331, 581-591.	1.5	113
6	In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 556-569.	1.5	111
7	Development of a wear prediction tool for steel railway wheels using three alternative wear functions. Wear, 2011, 271, 238-245.	1.5	101
8	Understanding the Friction Mechanisms Between the Human Finger and Flat Contacting Surfaces in Moist Conditions. Tribology Letters, 2011, 41, 283-294.	1.2	100
9	The effect of normal force and roughness on friction in human finger contact. Wear, 2009, 267, 1311-1318.	1.5	97
10	Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading. Tribology International, 2021, 154, 106685.	3.0	93
11	The effects of soot-contaminated engine oil on wear and friction: A review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 1669-1689.	1.1	87
12	Rolling–sliding laboratory tests of friction modifiers in dry and wet wheel–rail contacts. Wear, 2010, 268, 543-551.	1.5	85
13	Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribology International, 2020, 143, 106091.	3.0	81
14	Mapping railway wheel material wear mechanisms and transitions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224, 125-137.	1.3	78
15	Wheel and rail wear—Understanding the effects of water and grease. Wear, 2014, 314, 198-204.	1.5	78
16	Improving rail wear and RCF performance using laser cladding. Wear, 2016, 366-367, 268-278.	1.5	77
17	Wear and damage transitions of wheel and rail materials under various contact conditions. Wear, 2016, 362-363, 146-152.	1.5	77
18	Wear at the wheel/rail interface when sanding is used to increase adhesion. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220, 29-41.	1.3	74

Roger Lewis

#	Article	IF	CITATIONS
19	Characterisation of Contact Pressure Distribution in Bolted Joints. Strain, 2006, 42, 31-43.	1.4	73
20	Review of the frictional properties of finger-object contact when gripping. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221, 841-850.	1.0	71
21	Rolling–Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel–Rail Contacts. Tribology Letters, 2009, 33, 97-109.	1.2	71
22	A laboratory investigation on the influence of the particle size and slip during sanding on the adhesion and wear in the wheel–rail contact. Wear, 2011, 271, 14-24.	1.5	71
23	Characterising pressure and bruising in apple fruit. Wear, 2008, 264, 37-46.	1.5	66
24	The influence of laser hardening on wear in the valve and valve seat contact. Wear, 2009, 267, 797-806.	1.5	65
25	Finger friction: Grip and opening packaging. Wear, 2007, 263, 1124-1132.	1.5	63
26	A study on wear evaluation of railway wheels based onÂmultibodyÂdynamics and wear computation. Multibody System Dynamics, 2010, 24, 347-366.	1.7	62
27	Development of engineering design tools to help reduce apple bruising. Journal of Food Engineering, 2007, 83, 356-365.	2.7	61
28	Experimental Characterization of Wheel-Rail Contact Patch Evolution. Journal of Tribology, 2006, 128, 493-504.	1.0	55
29	Wear effects and mechanisms of soot-contaminated automotive lubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 159-169.	1.0	54
30	Tribology of the wheel–rail contact – aspects of wear, particle emission and adhesion. Vehicle System Dynamics, 2013, 51, 1091-1120.	2.2	52
31	The low adhesion problem due to leaf contamination in the wheel/rail contact: Bonding and low adhesion mechanisms. Wear, 2017, 378-379, 183-197.	1.5	51
32	Third body layer—experimental results and a model describing its influence on the traction coefficient. Wear, 2014, 314, 148-154.	1.5	47
33	Human finger contact with small, triangular ridged surfaces. Wear, 2011, 271, 2346-2353.	1.5	46
34	Assessment of railway curve lubricant performance using a twin-disc tester. Wear, 2014, 314, 205-212.	1.5	45
35	Effect of oil and water mixtures on adhesion in the wheel/rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223, 275-283.	1.3	43
36	Material concepts for top of rail friction management – Classification, characterisation and application. Wear, 2016, 366-367, 225-232.	1.5	43

#	Article	IF	CITATIONS
37	Temperature in a twin-disc wheel/rail contact simulation. Tribology International, 2006, 39, 1653-1663.	3.0	42
38	Measurement of interface pressure in interference fits. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219, 127-139.	1.1	41
39	Investigating the Lubricity and Electrical Insulation Caused by Sanding in Dry Wheel–Rail Contacts. Tribology Letters, 2010, 37, 623-635.	1.2	40
40	Correlations between rail wear rates and operating conditions in a commercial railroad. Tribology International, 2016, 95, 5-12.	3.0	40
41	Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity. Wear, 2017, 376-377, 1930-1937.	1.5	40
42	Wear of diesel engine inlet valves and seat inserts. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216, 205-216.	1,1	39
43	Disc machine study of contact isolation during railway track sanding. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2003, 217, 11-24.	1.3	39
44	An ultrasonic approach for contact stress mapping in machine joints and concentrated contacts. Journal of Strain Analysis for Engineering Design, 2004, 39, 339-350.	1.0	37
45	A numerical model of twin disc test arrangement for the evaluation of railway wheel wear prediction methods. Wear, 2010, 268, 660-667.	1.5	37
46	Laboratory investigation of some sanding parameters to improve the adhesion in leaf-contaminated wheel—rail contacts. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224, 139-157.	1.3	37
47	Experimental and numerical modelling of wheel–rail contact and wear. Wear, 2011, 271, 911-924.	1.5	37
48	The influence of induction hardening on the impact wear resistance of compacted graphite iron (CGI). Wear, 2011, 270, 302-311.	1.5	36
49	Wheel-rail creep force model for predicting water induced low adhesion phenomena. Tribology International, 2017, 109, 409-415.	3.0	36
50	Review of top of rail friction modifier tribology. Tribology - Materials, Surfaces and Interfaces, 2016, 10, 150-162.	0.6	35
51	Towards a standard approach for the wear testing of wheel and rail materials. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231, 760-774.	1.3	35
52	The role of slip ratio in rolling contact fatigue of rail materials under wet conditions. Wear, 2017, 376-377, 1892-1900.	1.5	34
53	Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction. Tribology International, 2013, 63, 34-44.	3.0	33
54	Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging. Reliability Engineering and System Safety, 2016, 154, 49-59.	5.1	33

#	Article	IF	CITATIONS
55	A modelling technique for predicting compound impact wear. Wear, 2007, 262, 1516-1521.	1.5	31
56	Influence of Different Application of Lubricants on Wear and Pre-existing Rolling Contact Fatigue Cracks of Rail Materials. Tribology Letters, 2017, 65, 1.	1.2	31
57	A study of clinicians' views on medical gloves and their effect on manual performance. American Journal of Infection Control, 2014, 42, 48-54.	1.1	30
58	A Review on Wear Between Railway Wheels and Rails Under Environmental Conditions. Journal of Tribology, 2019, 141, .	1.0	30
59	Getting to grips with packaging: using ethnography and computer simulation to understand hand–pack interaction. Packaging Technology and Science, 2007, 20, 217-229.	1.3	29
60	Human finger friction in contacts with ridged surfaces. Wear, 2013, 301, 330-337.	1.5	29
61	Understanding the effect of finger–ball friction on the handling performance of rugby balls. Sports Engineering, 2009, 11, 109-118.	0.5	28
62	Application of Fastsim with variable coefficient of friction using twin disc experimental measurements. Wear, 2012, 274-275, 109-126.	1.5	28
63	Effects of deep cryogenic treatment on the wear development of H13A tungsten carbide inserts when machining AISI 1045 steel. Production Engineering, 2014, 8, 355-364.	1.1	27
64	Morphological parametric mapping of 21 skin sites throughout the body using optical coherence tomography. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103501.	1.5	27
65	Effect of humidity, temperature and railhead contamination on the performance of friction modifiers: Pin-on-disk study. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227, 115-127.	1.3	26
66	Friction and Wear Phenomena of Vegetable Oil–Based Lubricants with Additives at Severe Sliding Wear Conditions. Tribology Transactions, 2018, 61, 207-219.	1.1	26
67	Assessing the impact of small amounts of water and iron oxides on adhesion in the wheel/rail interface using High Pressure Torsion testing. Tribology International, 2019, 135, 55-64.	3.0	26
68	The influence of cryogenic processing on wear on the impact wear resistance of low carbon steel and lamellar graphite cast iron. Wear, 2011, 271, 1481-1489.	1.5	25
69	Full-scale testing of low adhesion effects with small amounts of water in the wheel/rail interface. Tribology International, 2020, 141, 105907.	3.0	25
70	Sub-clinical assessment of atopic dermatitis severity using angiographic optical coherence tomography. Biomedical Optics Express, 2018, 9, 2001.	1.5	24
71	Controlled peel testing of a model tissue for diseased aorta. Journal of Biomechanics, 2016, 49, 3667-3675.	0.9	23
72	Effect of the presence of moisture at the wheel–rail interface during dew and damp conditions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 979-989.	1.3	23

#	Article	IF	CITATIONS
73	Rubber friction and the effect of shape. Tribology International, 2020, 141, 105911.	3.0	23
74	Ultrasonic measurement of railway wheel hub–axle press-fit contact pressures. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225, 287-298.	1.3	22
75	Simulation and understanding the wet-rail phenomenon using twin disc testing. Tribology International, 2019, 136, 475-486.	3.0	22
76	Characterization and wear performance of boride phases over tool steel substrates. Advances in Mechanical Engineering, 2016, 8, 168781401663025.	0.8	21
77	Measuring contact area in a sliding human fingerâ€pad contact. Skin Research and Technology, 2018, 24, 31-44.	0.8	21
78	Solid particle erosion caused by rice grains. Wear, 2009, 267, 223-232.	1.5	20
79	An alternative method for the assessment of railhead traction. Wear, 2011, 271, 62-70.	1.5	20
80	An ultrasonic sensor for monitoring wheel flange/rail gauge corner contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227, 188-195.	1.3	20
81	Rail grinding for the 21st century – taking a lead from the aerospace industry. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 457-465.	1.3	20
82	Laser cladding of rail; the effects of depositing material on lower rail grades. Wear, 2019, 438-439, 203045.	1.5	20
83	The real-time measurement of wear using ultrasonic reflectometry. Wear, 2015, 332-333, 1129-1133.	1.5	19
84	The contributions of skin structural properties to the friction of human finger-pads. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 294-311.	1.0	19
85	An analysis of the quality of experimental design and reliability of results in tribology research. Wear, 2019, 426-427, 1712-1718.	1.5	19
86	The development of a high pressure torsion test methodology for simulating wheel/rail contacts. Tribology International, 2021, 156, 106842.	3.0	19
87	Feasibility Study for Real Time Measurement of Wheel-Rail Contact Using an Ultrasonic Array. Journal of Tribology, 2009, 131, .	1.0	18
88	Basic tribology of the wheel–rail contact. , 2009, , 34-57.		17
89	How wide do you want the jar?: the effect on diameter for ease of opening for wideâ€mouth closures. Packaging Technology and Science, 2010, 23, 11-18.	1.3	17
90	Application of grinding to reduce rail side wear in straight track. Wear, 2018, 402-403, 71-79.	1.5	17

#	Article	IF	CITATIONS
91	A review of railway sanding system research: adhesion restoration and leaf layer removal. Tribology - Materials, Surfaces and Interfaces, 2018, 12, 237-251.	0.6	17
92	A new approach for modelling mild and severe wear in wheel-rail contacts. Wear, 2021, 476, 203761.	1.5	17
93	Effect of Gear Surface and Lubricant Interaction on Mild Wear. Tribology Letters, 2012, 48, 183-200.	1.2	16
94	A new method for the assessment of traction enhancers and the generation of organic layers in a twin-disc machine. Wear, 2016, 366-367, 258-267.	1.5	16
95	Creating a model of diseased artery damage and failure from healthy porcine aorta. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 378-393.	1.5	16
96	An evaluation of ultrasonic arrays for the static and dynamic measurement of wheel–rail contact pressure and area. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1580-1593.	1.0	16
97	Shape analysis of railway ballast stones: curvature-based calculation of particle angularity. Scientific Reports, 2020, 10, 6045.	1.6	16
98	A critical review of the assessment of medical gloves. Tribology - Materials, Surfaces and Interfaces, 2021, 15, 10-19.	0.6	16
99	A critical review of glove and hand research with regard to medical glove design. Ergonomics, 2014, 57, 116-129.	1.1	15
100	Investigation of the isolation and frictional properties of hydrophobic products on the rail head, when used to combat low adhesion. Wear, 2014, 314, 213-219.	1.5	15
101	Optimisation of a railway sanding system for optimal grain entrainment into the wheel–rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 43-62.	1.3	15
102	Effects of Jatropha lubricant thermo-oxidation on the tribological behaviour of engine cylinder liners as measured by a reciprocating friction test. Wear, 2019, 426-427, 910-918.	1.5	15
103	Static wheel/rail contact isolation due to track contamination. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220, 43-53.	1.3	14
104	Characterising and reducing seizure wear of inconel and incoloy superalloys in a sliding contact. Wear, 2011, 271, 1671-1680.	1.5	14
105	Effect of surface texture, moisture and wear on handling of rugby balls. Tribology International, 2013, 63, 196-203.	3.0	14
106	New Non-invasive Techniques to Quantify Skin Surface Strain and Sub-surface Layer Deformation of Finger-pad during Sliding. Biotribology, 2017, 12, 52-58.	0.9	14
107	Chemistry of black leaf films synthesised using rail steels and their influence on the low friction mechanism. RSC Advances, 2018, 8, 32506-32521.	1.7	14
108	A comparison of friction modifier performance using two laboratory test scales. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 201-210.	1.3	14

#	Article	IF	CITATIONS
109	Evaluation of the coefficient of friction of rail in the field and laboratory using several devices. Tribology - Materials, Surfaces and Interfaces, 2020, 14, 119-129.	0.6	14
110	Numerical calculation of wear in rolling contact based on the Archard equation: Effect of contact parameters and consideration of uncertainties. Wear, 2022, 490-491, 204188.	1.5	14
111	Interactions between toothbrush and toothpaste particles during simulated abrasive cleaning. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 755-765.	1.0	13
112	Abrasive and impact wear of stone used to manufacture axes in Neolithic Greece. Wear, 2011, 271, 2549-2560.	1.5	13
113	Ultrasonic measurement of self-loosening in bolted joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 1869-1884.	1.1	13
114	A comparison of friction behaviour for ex vivo human, tissue engineered and synthetic skin. Tribology International, 2016, 103, 487-495.	3.0	13
115	Friction and wear testing for a down-hole oil well centraliser. Wear, 2007, 263, 57-64.	1.5	12
116	Simulation of arterial dissection by a penetrating external body using cohesive zone modelling. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 95-105.	1.5	12
117	Optimisation of grease application to railway tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1514-1527.	1.3	12
118	The wear and fatigue behaviours of hollow head & sodium filled engine valve. Tribology International, 2018, 128, 75-88.	3.0	12
119	Morphology of a human finger pad during sliding against a grooved plate: A pilot study. Biotribology, 2020, 21, 100114.	0.9	12
120	Comparison of Tack of Pressure-Sensitive Adhesives (PSAs) at Different Temperatures. Journal of Adhesion Science and Technology, 2010, 24, 1949-1957.	1.4	11
121	Skin Friction at the Interface between Hands and Sports Equipment. Procedia Engineering, 2014, 72, 611-617.	1.2	11
122	Development of Grease Tackiness Test. Tribology Transactions, 2019, 62, 207-217.	1.1	11
123	Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products. Lubricants, 2021, 9, 100.	1.2	11
124	The modification of a slip resistance meter for measurement of railhead adhesion. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227, 196-200.	1.3	10
125	Low adhesion due to oxide formation in the presence of salt. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 887-897.	1.3	10
126	Factors influencing the perception of roughness in manual exploration: Do medical gloves reduce cutaneous sensibility?. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 273-284.	1.0	10

#	Article	IF	CITATIONS
127	Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 1375-1387.	1.3	10
128	Influence of medical gloves on fingerpad friction and feel. Wear, 2017, 376-377, 324-328.	1.5	10
129	Comparison of numerical and ultrasonic techniques for quantifying interference fit pressures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 1125-1130.	1.1	9
130	An evaluation of dexterity and cutaneous sensibility tests for use with medical gloves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 2896-2912.	1.1	9
131	Wear of a chute in a rice sorting machine. Wear, 2007, 263, 65-73.	1.5	8
132	Friction in a hydraulic motor piston/cam roller contact lined with PTFE impregnated cloth. Wear, 2009, 266, 888-892.	1.5	8
133	Wear of stone used to manufacture axes in the Neolithic settlement at Makriyalos in Northern Greece. Wear, 2009, 267, 1325-1332.	1.5	8
134	Influence of the Interfacial Pressure Distribution on Loosening of Bolted Joints. Strain, 2011, 47, 65-78.	1.4	8
135	Frictional Interaction between Running Sock Fabrics and Plantar Aspect of First Metatarsal Head in Different Moisture Conditions. Procedia Engineering, 2016, 147, 753-758.	1.2	8
136	How do gloves affect cutaneous sensibility in medical practice? Two new applied tests. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 28-39.	1.0	8
137	Friction and wear in railway ballast stone interfaces. Tribology International, 2020, 151, 106498.	3.0	8
138	Towards a Standard Approach for the Twin Disc Testing of Top-Of Rail Friction Management Products. Lubricants, 2022, 10, 124.	1.2	8
139	An assessment of the performance of grip enhancing agents used in sports applications. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 616-625.	1.0	7
140	Measurement of finger pad forces and friction using finger nail mounted strain gauges. Wear, 2017, 376-377, 295-304.	1.5	7
141	Contemporary challenges of soot build-up in IC engine and their tribological implications. Tribology - Materials, Surfaces and Interfaces, 2018, 12, 115-129.	0.6	7
142	Case study: Understanding the formation of squat-type defects in a metropolitan railway. Engineering Failure Analysis, 2021, 123, 105325.	1.8	7
143	Coating and treatment solutions for rolling/sliding component contacts. Wear, 2009, 267, 1009-1021.	1.5	6
144	Field trials of a methodology for locomotive brake testing to assess friction enhancement in the wheel/rail interface using a representative leaf layer. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 1053-1064.	1.3	6

#	Article	IF	CITATIONS
145	Assessing the effectiveness of traction gels using full-scale and field testing. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 690-699.	1.3	6
146	The effects of chlorination, thickness, and moisture on glove donning efficiency. Ergonomics, 2021, 64, 1205-1216.	1.1	6
147	Iron Oxide and Water Paste Rheology and Its Effect on Low Adhesion in the Wheel/Rail Interface. Tribology Letters, 2022, 70, 1.	1.2	6
148	Effects of polarity on the friction and wear of collector shoes deployed in a metro traction system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 323-330.	1.3	5
149	Finite element assessment of the temperature field couple under joule heat and friction heat between a third rail and collector shoe. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 1086-1094.	1.0	5
150	Investigating Foot-sock Friction: A Comparison of Two Different Methodologies. Procedia Engineering, 2016, 147, 759-764.	1.2	5
151	Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation. Proceedings of SPIE, 2016, , .	0.8	5
152	Ultrasonic monitoring of insulated block joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 251-261.	1.3	5
153	A comparison of wear behaviour of heat-resistant steel engine valves and TiAl engine valves. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1549-1562.	1.0	5
154	Influence of temperature on adhesion coefficient and bonding strength of leaf films: A twin disc study. Wear, 2020, 454-455, 203330.	1.5	5
155	Understanding the Friction Measured by Standardised Test Methodologies Used to Assess Shoe-Surface Slip Risk. Journal of Testing and Evaluation, 2015, 43, 723-734.	0.4	5
156	A comprehensive characterisation of Laser Sintered Polyamide-12 surfaces. Polymer Testing, 2022, 106, 107450.	2.3	5
157	Comparison of the damage and microstructure evolution of eutectoid and hypereutectoid rail steels under a rolling-sliding contact. Wear, 2022, 492-493, 204233.	1.5	5
158	DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy. Granular Matter, 2022, 24, 40.	1.1	5
159	Particle characterisation of rail sands for understanding tribological behaviour. Wear, 2019, 432-433, 202960.	1.5	4
160	The composition and friction-reducing properties of leaf layers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200057.	1.0	4
161	Two-layer laser clad coating as a replacement for chrome electroplating on forged steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 7120-7138.	1.1	4
162	Effect of seasonal change on the biomechanical and physical properties of the human skin. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 127, 105058.	1.5	4

#	Article	IF	CITATIONS
163	Transition of the friction behaviour and contact stiffness due to repeated high-pressure contact and slip. Tribology International, 2022, 170, 107487.	3.0	4
164	Experimental investigation on ball plate contact using ultrasonic reflectometry: From static to dynamic. Ultrasonics, 2022, 124, 106733.	2.1	4
165	Investigating openability of rigid plastic containers with peelable lids: The link between human strength and grip and opening forces. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 1056-1068.	1.1	3
166	Verification of the use of Micro-CT scanning to assess the features of entire squat type defects. Wear, 2019, 438-439, 203074.	1.5	3
167	Optimization of Friction Welding Process Parameters for 42Cr9Si2 Hollow Head and Sodium Filled Engine Valve and Valve Performance Evaluation. Materials, 2019, 12, 1123.	1.3	3
168	Effects of oxide and water on friction of rail steel – new test method and friction mapping. Tribology - Materials, Surfaces and Interfaces, 2021, 15, 80-91.	0.6	3
169	Measuring material plastic response to cyclic loading in modern rail steels from a minimal number of twin-disc tests. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 1203-1213.	1.3	3
170	Evaluation of thermo-oxidized Jatropha bio-oil in lubrication of actual wet clutch materials. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 2021-2033.	1.0	3
171	<i>In situ</i> evaluation of contact stiffness in a slip interface with different roughness conditions using ultrasound reflectometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210442.	1.0	3
172	Investigating a methodology to measure moisture in skin–textile friction experiments. Footwear Science, 2015, 7, S15-S16.	0.8	2
173	Improved modelling of trains braking under low adhesion conditions. Tribology - Materials, Surfaces and Interfaces, 2020, 14, 131-141.	0.6	2
174	New laboratory methodologies to analyse the top of rail friction modifier performance across different test scales. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 191-200.	1.3	2
175	Effect of simulated tennis steps and slides on tread element friction and wear. Sports Engineering, 2021, 24, 1.	0.5	2
176	Water Jet Erosion Performance of Carbon Fiber and Glass Fiber Reinforced Polymers. Polymers, 2021, 13, 2933.	2.0	2
177	A new predictive model for normal and compound impact wear. Wear, 2021, 480-481, 203954.	1.5	2
178	The Effects of Alternative Top of Rail Friction Materials on Pre-Existing Rolling Contact Fatigue Cracks. , 0, , .		2
179	Wheel–rail isolation. , 2009, , 528-549.		1
180	Geospatial and temporal data mining to combine railway low adhesion and rail defect data. Proceedings of the Institution of Civil Engineers: Transport, 2020, 173, 273-286.	0.3	1

#	Article	IF	Citations
181	Shoe–Surface Tribology in Hardcourt Tennis. Proceedings (mdpi), 2020, 49, 90.	0.2	1
182	Vehicle-based cryogenic rail cleaning: an alternative solution to â€~leaves on the line'. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2021, 174, 176-182.	0.3	1
183	A new hybrid approach to predict worn wheel profile shapes. Vehicle System Dynamics, 0, , 1-17.	2.2	1
184	A design tool for railway wheels incorporating damage models and dynamic simulations. , 2005, , .		0
185	Optical coherence elastography for human finger-pad skin deformation studies. Proceedings of SPIE, 2016, , .	0.8	0
186	Defining the role of â€~zero wear volume' in percussive impact. Wear, 2021, 464-465, 203535.	1.5	0
187	An investigation into the role of specimen geometry when undertaking tribological testing on seal fin components. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622110250.	1.1	0
188	Tribological Aspects to Optimize Traction Coefficient during Running-in Period using Surface Texture . Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 2020, 61, 184-191.	0.1	0