
David E Gloriam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4454445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligand-directed bias of G protein signaling at the dopamine D2 receptor. Cell Chemical Biology, 2022, 29, 226-238.e4.	5.2	14
2	The G protein database, GproteinDb. Nucleic Acids Research, 2022, 50, D518-D525.	14.5	49
3	Community guidelines for GPCR ligand bias: IUPHAR review 32. British Journal of Pharmacology, 2022, 179, 3651-3674.	5.4	84
4	Common coupling map advances GPCR-G protein selectivity. ELife, 2022, 11, .	6.0	59
5	Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. ELife, 2022, 11, .	6.0	101
6	Molecular insights into ligand recognition and G protein coupling of the neuromodulatory orphan receptor GPR139. Cell Research, 2022, 32, 210-213.	12.0	13
7	Structure of the class D GPCR Ste2 dimer coupled to two G proteins. Nature, 2021, 589, 148-153.	27.8	55
8	GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Research, 2021, 49, D335-D343.	14.5	254
9	Targeting the APP-Mint2 Protein–Protein Interaction with a Peptide-Based Inhibitor Reduces Amyloid-β Formation. Journal of the American Chemical Society, 2021, 143, 891-901.	13.7	15
10	Structural insights into the lipid and ligand regulation of serotonin receptors. Nature, 2021, 592, 469-473.	27.8	138
11	Structural Determinants for the Mode of Action of Imidazopyridine DS2 at δ-Containing γ-Aminobutyric Acid Type A Receptors. Journal of Medicinal Chemistry, 2021, 64, 4730-4743.	6.4	6
12	Molecular Determinants Underlying Delta Selective Compound 2 Activity at <i>δ</i> -Containing GABA _A Receptors. Molecular Pharmacology, 2021, 100, 46-56.	2.3	2
13	Structural dynamics bridge the gap between the genetic and functional levels of GPCRs. Current Opinion in Structural Biology, 2021, 69, 150-159.	5.7	6
14	GPCR activation mechanisms across classes and macro/microscales. Nature Structural and Molecular Biology, 2021, 28, 879-888.	8.2	98
15	An online GPCR structure analysis platform. Nature Structural and Molecular Biology, 2021, 28, 875-878.	8.2	16
16	A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Molecular Brain, 2021, 14, 173.	2.6	15
17	Pharmacology and function of the orphan GPR139 G proteinâ€coupled receptor. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 35-46.	2.5	17
18	G proteinâ€coupled receptor pharmacology—The next generation. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 3-4.	2.5	2

#	Article	IF	CITATIONS
19	Novel approaches leading towards peptide GPCR deâ€orphanisation. British Journal of Pharmacology, 2020, 177, 961-968.	5.4	30
20	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
21	GPCRmd uncovers the dynamics of the 3D-GPCRome. Nature Methods, 2020, 17, 777-787.	19.0	90
22	Delineation of molecular determinants for FR900359 inhibition of Gq/11 unlocks inhibition of Gαs. Journal of Biological Chemistry, 2020, 295, 13850-13861.	3.4	11
23	Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature, 2020, 587, 650-656.	27.8	87
24	The European Research Network on Signal Transduction (ERNEST): Toward a Multidimensional Holistic Understanding of G Protein-Coupled Receptor Signaling. ACS Pharmacology and Translational Science, 2020, 3, 361-370.	4.9	15
25	Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABAA receptors. Scientific Reports, 2020, 10, 10078.	3.3	10
26	Probing the Existence of a Metastable Binding Site at the β ₂ -Adrenergic Receptor with Homobivalent Bitopic Ligands. Journal of Medicinal Chemistry, 2019, 62, 7806-7839.	6.4	9
27	Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell, 2019, 179, 895-908.e21.	28.9	157
28	Bigger is better in virtual drug screens. Nature, 2019, 566, 193-194.	27.8	31
29	An online resource for GPCR structure determination and analysis. Nature Methods, 2019, 16, 151-162.	19.0	108
30	Five-Membered <i>N</i> -Heterocyclic Scaffolds as Novel Amino Bioisosteres at γ-Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters. Journal of Medicinal Chemistry, 2019, 62, 5797-5809.	6.4	20
31	Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Scientific Reports, 2019, 9, 3802.	3.3	10
32	Rational design of a heterotrimeric G protein α subunit with artificial inhibitor sensitivity. Journal of Biological Chemistry, 2019, 294, 5747-5758.	3.4	32
33	Discovery of 2-(Imidazo[1,2- <i>b</i>]pyridazin-2-yl)acetic Acid as a New Class of Ligands Selective for the γ-Hydroxybutyric Acid (GHB) High-Affinity Binding Sites. Journal of Medicinal Chemistry, 2019, 62, 2798-2813.	6.4	12
34	Receptor selectivity between the G proteins Gα ₁₂ and Gα ₁₃ is defined by a single leucineâ€ŧoâ€isoleucine variation. FASEB Journal, 2019, 33, 5005-5017.	0.5	23
35	5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell, 2018, 172, 719-730.e14.	28.9	185
36	GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Research, 2018, 46, D440-D446.	14.5	421

#	Article	IF	CITATIONS
37	Pharmacogenomics of GPCR Drug Targets. Cell, 2018, 172, 41-54.e19.	28.9	464
38	Structural Mapping of Adenosine Receptor Mutations: Ligand Binding and Signaling Mechanisms. Trends in Pharmacological Sciences, 2018, 39, 75-89.	8.7	64
39	Structure–activity relationship and conformational studies of the natural product cyclic depsipeptides YM-254890 and FR900359. European Journal of Medicinal Chemistry, 2018, 156, 847-860.	5.5	24
40	The G protein-coupled receptor database, GPCRdb. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY27-2.	0.0	0
41	Structural insight to mutation effects uncover a common allosteric site in class C GPCRs. Bioinformatics, 2017, 33, 1116-1120.	4.1	9
42	The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW. Neurochemistry International, 2017, 102, 105-113.	3.8	36
43	Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide. Scientific Reports, 2017, 7, 41002.	3.3	33
44	Selectivity determinants of GPCR–G-protein binding. Nature, 2017, 545, 317-322.	27.8	297
45	Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 2017, 16, 829-842.	46.4	1,773
46	Molecular Hybridization of Potent and Selective Î ³ -Hydroxybutyric Acid (GHB) Ligands: Design, Synthesis, Binding Studies, and Molecular Modeling of Novel 3-Hydroxycyclopent-1-enecarboxylic Acid (HOCPCA) and trans-Î ³ -Hydroxycrotonic Acid (T-HCA) Analogs. Journal of Medicinal Chemistry, 2017, 60, 9022-9039.	6.4	21
47	The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Scientific Reports, 2017, 7, 1128.	3.3	25
48	Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils. Journal of Pharmacological and Toxicological Methods, 2017, 88, 72-78.	0.7	11
49	Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method. Scientific Reports, 2017, 7, 4829.	3.3	10
50	Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Current Opinion in Pharmacology, 2016, 30, 51-58.	3.5	52
51	Editorial overview: New technologies: GPCR drug design and function — exploiting the current (of) structures. Current Opinion in Pharmacology, 2016, 30, vii-x.	3.5	7
52	GPCRdb: the G protein oupled receptor database – an introduction. British Journal of Pharmacology, 2016, 173, 2195-2207.	5.4	165
53	Total synthesis and structure–activity relationship studies of a series of selective G protein inhibitors. Nature Chemistry, 2016, 8, 1035-1041.	13.6	67
54	Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139. Scientific Reports, 2016, 6, 36681.	3.3	23

#	Article	IF	CITATIONS
55	GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Research, 2016, 44, D356-D364.	14.5	472
56	Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants. Scientific Reports, 2015, 5, 13869.	3.3	38
57	Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 2015, 36, 22-31.	8.7	387
58	Identification of the first surrogate agonists for the G protein-coupled receptor GPR132. RSC Advances, 2015, 5, 48551-48557.	3.6	8
59	Selective Allosteric Antagonists for the G Protein-Coupled Receptor GPRC6A Based on the 2-Phenylindole Privileged Structure Scaffold. Journal of Medicinal Chemistry, 2015, 58, 8938-8951.	6.4	22
60	A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Methods, 2015, 71, 104-112.	3.8	19
61	mGluR5: Exploration of Orthosteric and Allosteric Ligand Binding Pockets and Their Applications to Drug Discovery. Neurochemical Research, 2014, 39, 1862-1875.	3.3	29
62	Computer-Aided Discovery of Aromatic <scp>l</scp> -α-Amino Acids as Agonists of the Orphan G Protein-Coupled Receptor GPR139. Journal of Chemical Information and Modeling, 2014, 54, 1553-1557.	5.4	50
63	Structure–Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators. Journal of Chemical Information and Modeling, 2013, 53, 2863-2873.	5.4	2
64	3-Substituted 2-phenyl-indoles: privileged structures for medicinal chemistry. RSC Advances, 2013, 3, 945-960.	3.6	59
65	Design, Synthesis, and Pharmacological Characterization of <i>N</i> - and <i>O</i> -Substituted 5,6,7,8-Tetrahydro-4 <i>H</i> -isoxazolo[4,5- <i>d</i>]azepin-3-ol Analogues: Novel 5-HT _{2A} /5-HT _{2C} Receptor Agonists with Pro-Cognitive Properties. Journal of Medicinal Chemistry, 2013, 56, 1211-1227.	6.4	50
66	Chemogenomics of allosteric binding sites in GPCRs. Drug Discovery Today: Technologies, 2013, 10, e307-e313.	4.0	8
67	The Contribution of Atom Accessibility to Site of Metabolism Models for Cytochromes P450. Molecular Pharmaceutics, 2013, 10, 1216-1223.	4.6	38
68	Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors. PLoS ONE, 2013, 8, e78515.	2.5	9
69	Pharmacological Characterization and Modeling of the Binding Sites of Novel 1,3-Bis(pyridinylethynyl)benzenes as Metabotropic Clutamate Receptor 5-Selective Negative Allosteric Modulators. Molecular Pharmacology, 2012, 82, 929-937.	2.3	34
70	Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. Journal of Medicinal Chemistry, 2012, 55, 8164-8177.	6.4	27
71	Editorial [Hot Topic: Methods for the Successful Application of Chemogenomics to GPCR Drug Design (Guest Editors: Stephen L. Garland & David E. Gloriam)]. Current Topics in Medicinal Chemistry, 2011, 11, 1870-1871.	2.1	10
72	Chemogenomic Discovery of Allosteric Antagonists at the GPRC6A Receptor. Chemistry and Biology, 2011, 18, 1489-1498.	6.0	36

#	Article	IF	CITATIONS
73	G Protein- and Agonist-Bound Serotonin 5-HT2A Receptor Model Activated by Steered Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2011, 51, 315-325.	5.4	47
74	Present Perspectives on the Automated Classification of the G-Protein Coupled Receptors (GPCRs) at the Protein Sequence Level. Current Topics in Medicinal Chemistry, 2011, 11, 1994-2009.	2.1	8
75	A Ligands View of Target Similarity: Chemogenomic Binding Site- Directed Techniques for Drug Discovery. Current Topics in Medicinal Chemistry, 2011, 11, 1872-1881.	2.1	15
76	In Silico Identification of Novel G Protein-Coupled Receptors. Neuromethods, 2011, , 3-18.	0.3	0
77	A Community Standard Format for the Representation of Protein Affinity Reagents. Molecular and Cellular Proteomics, 2010, 9, 1-10.	3.8	35
78	The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics, 2010, 26, 2988-2989.	4.1	129
79	SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism. ACS Medicinal Chemistry Letters, 2010, 1, 96-100.	2.8	233
80	The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents. BMC Genomics, 2009, 10, 24.	2.8	47
81	Critical evaluation of the FANTOM3 non-coding RNA transcripts. Genomics, 2009, 94, 169-176.	2.9	15
82	Definition of the G Protein-Coupled Receptor Transmembrane Bundle Binding Pocket and Calculation of Receptor Similarities for Drug Design. Journal of Medicinal Chemistry, 2009, 52, 4429-4442.	6.4	100
83	Proteomic applications of automated GPCR classification. Proteomics, 2007, 7, 2800-2814.	2.2	40
84	The G protein-coupled receptor subset of the rat genome. BMC Genomics, 2007, 8, 338.	2.8	170
85	Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics, 2006, 88, 263-273.	2.9	354
86	The G Protein–Coupled Receptor Subset of the Chicken Genome. PLoS Computational Biology, 2006, 2, e54.	3.2	104
87	The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics, 2004, 84, 23-33.	2.9	214
88	Selectivity Landscape of 100 Therapeutically Relevant GPCR Profiled by an Effector Translocation-Based BRET Platform. SSRN Electronic Journal, 0, , .	0.4	16