Franck Rataboul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4454364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Applications of Alkyl Levulinates. ACS Sustainable Chemistry and Engineering, 2014, 2, 1338-1352.	3.2	360
2	Cellulose hydrothermal conversion promoted by heterogeneous BrÃ,nsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid. Applied Catalysis B: Environmental, 2011, 105, 171-181.	10.8	229
3	Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chemistry, 2009, 11, 2052.	4.6	106
4	Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations. Applied Catalysis A: General, 2011, 402, 1-10.	2.2	82
5	Cellulose Reactivity in Supercritical Methanol in the Presence of Solid Acid Catalysts: Direct Synthesis of Methyl-levulinate. Industrial & Engineering Chemistry Research, 2011, 50, 799-805.	1.8	77
6	Cationisation of galactomannan and xylan hemicelluloses. Carbohydrate Polymers, 2011, 85, 138-148.	5.1	53
7	Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catalysis Today, 2021, 373, 24-37.	2.2	47
8	Cellulose Conversion with Tungstatedâ€Aluminaâ€Based Catalysts: Influence of the Presence of Platinum and Mechanistic Studies. ChemSusChem, 2013, 6, 500-507.	3.6	30
9	Telomerization of Butadiene with Starch under Mild Conditions. ChemSusChem, 2009, 2, 1125-1129.	3.6	28
10	Palladium-Catalyzed Telomerization of Butadiene with Polyols: From Mono to Polysaccharides. Topics in Current Chemistry, 2010, 295, 93-119.	4.0	21
11	Telomerization of butadiene with starch in water: role of the surfactants. Green Chemistry, 2010, 12, 475.	4.6	21
12	Influence of butanol isomers on the reactivity of cellulose towards the synthesis of butyl levulinates catalyzed by liquid and solid acid catalysts. New Journal of Chemistry, 2016, 40, 3747-3754.	1.4	19
13	New Insights into the Reactivity of Biomass with Butenes for the Synthesis of Butyl Levulinates. ChemSusChem, 2017, 10, 2612-2617.	3.6	10
14	Noncatalyzed Liquefaction of Celluloses in Hydrothermal Conditions: Influence of Reactant Physicochemical Characteristics and Modeling Studies. Industrial & Engineering Chemistry Research, 2017, 56, 126-134.	1.8	9
15	First Example of the Use of Biosourced Alkyl Levulinates as Solvents for Synthetic Chemistry: Application to the Heterogeneously Catalyzed Heck Coupling. ChemistrySelect, 2019, 4, 3329-3333.	0.7	8
16	From the grafting of NHC-based Pd(II) complexes onto TiO2 to the in situ generation of Mott-Schottky heterojunctions: The boosting effect in the Suzuki-Miyaura reaction. Do the evolved Pd NPs act as reservoirs?. Journal of Catalysis, 2021, 398, 133-147.	3.1	8
17	Influence of Liquid or Solid Phase Preparation of Cationic Hemicelluloses on Physical Properties of Paper. BioResources, 2013, 8,	0.5	6
18	Insights into the Suzukiâ€Miyaura Reaction Catalyzed by Novel Pdâ^'Carbene Complexes. Are Palladiumâ^'Tetra―carbene Entities the Key Active Species?. ChemCatChem, 2020, 12, 5797-5808.	1.8	6

FRANCK RATABOUL

#	Article	IF	CITATIONS
19	Selective Aerobic Oxidation of Benzyl Alcohols with Palladium(0) Nanoparticles Suspension in Water. Catalysis Letters, 2021, 151, 3239-3249.	1.4	6
20	Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts, 2021, 11, 1311.	1.6	6
21	Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation. Beilstein Journal of Nanotechnology, 2019, 10, 228-237.	1.5	5
22	Study of the oxidative esterification of furfural catalyzed by Au25(glutathione)18 nanocluster deposited on zirconia. Molecular Catalysis, 2021, 499, 111265.	1.0	5
23	First study on telomerization of chitosan and guar hemicellulose with butadiene: Influence of reaction parameters on the substitution degree of the biopolymers. Molecular Catalysis, 2020, 483, 110706.	1.0	4
24	Kinetic Study of the Herrmann–Beller Palladacycle-Catalyzed Suzuki–Miyaura Coupling of 4-Iodoacetophenone and Phenylboronic Acid. Catalysts, 2020, 10, 989.	1.6	3
25	Synthesis of terpene derivatives of ethanolamine using telomerization reaction. Tetrahedron Letters, 2016, 57, 452-457.	0.7	2
26	A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules, 2021, 26, 6796.	1.7	1