Yong-Cheol Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4454316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linear Control Gain for Synthetic Inertia of a PMSG-Based Wind Turbine Generator. Journal of Electrical Engineering and Technology, 2023, 18, 53-60.	2.0	2
2	Power Smoothing of a Variable-speed Wind Turbine Generator. International Journal of Control, Automation and Systems, 2021, 19, 11-19.	2.7	5
3	PI Control Loop–Based Frequency Smoothing of a Doubly-Fed Induction Generator. IEEE Transactions on Sustainable Energy, 2021, 12, 1811-1819.	8.8	11
4	A frequency-responsive power-smoothing scheme of a doubly-fed induction generator for enhancing the energy-absorbing capability. International Journal of Electrical Power and Energy Systems, 2021, 131, 107053.	5.5	5
5	Power Smoothing of a Variable-Speed Wind Turbine Generator Based on a Two-Valued Control Gain. IEEE Transactions on Sustainable Energy, 2020, 11, 2765-2774.	8.8	15
6	Frequency Stability Support of a DFIG to Improve the Settling Frequency. IEEE Access, 2020, 8, 22473-22482.	4.2	16
7	Temporary Frequency Support of a DFIG for High Wind Power Penetration. IEEE Transactions on Power Systems, 2018, 33, 3428-3437.	6.5	130
8	Stable stepwise short-term frequency support of a DFIG-based wind farm. International Transactions on Electrical Energy Systems, 2018, 28, e2495.	1.9	4
9	Flexible IQ–V Scheme of a DFIG for Rapid Voltage Regulation of a Wind Power Plant. IEEE Transactions on Industrial Electronics, 2017, 64, 8832-8842.	7.9	25
10	Power Smoothing of a Variable-Speed Wind Turbine Generator in Association With the Rotor-Speed-Dependent Gain. IEEE Transactions on Sustainable Energy, 2017, 8, 990-999.	8.8	41
11	Disturbance-Adaptive Short-Term Frequency Support of a DFIG Associated With the Variable Gain Based on the ROCOF and Rotor Speed. IEEE Transactions on Power Systems, 2017, 32, 1873-1881.	6.5	66
12	Analysis on Special Protection Scheme of Korea Electric Power System by Fully Utilizing STATCOM in a Generation Side. IEEE Transactions on Power Systems, 2017, 32, 1882-1890.	6.5	20
13	Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization. Energies, 2017, 10, 1863.	3.1	6
14	Impedance-Based Stability Analysis in Grid Interconnection Impact Study Owing to the Increased Adoption of Converter-Interfaced Generators. Energies, 2017, 10, 1355.	3.1	13
15	Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation. Energies, 2017, 10, 555.	3.1	8
16	A Framework to Analyze the Stochastic Harmonics and Resonance of Wind Energy Grid Interconnection. Energies, 2016, 9, 700.	3.1	4
17	Economic considerations underlying the introduction of capacity mechanism in Korean offshore wind farms. International Transactions on Electrical Energy Systems, 2016, 26, 2060-2073.	1.9	2
18	Optimal Operation of Multiple DGs in DC Distribution System to Improve System Efficiency. IEEE Transactions on Industry Applications, 2016, 52, 3673-3681.	4.9	15

Yong-Cheol Kang

#	Article	IF	CITATIONS
19	Coordinated control for low voltage ride-through of a PMSG-based wind power plant. Journal of International Council on Electrical Engineering, 2016, 6, 242-251.	0.4	2
20	Improved inertial control for permanent magnet synchronous generator wind turbine generators. IET Renewable Power Generation, 2016, 10, 1366-1373.	3.1	30
21	Stepwise inertial control of a wind turbine generator to minimize a second frequency dip. Journal of International Council on Electrical Engineering, 2016, 6, 153-159.	0.4	3
22	Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator. IEEE Transactions on Smart Grid, 2016, 7, 2971-2979.	9.0	49
23	Transient voltage control of a DFIG-based wind power plant for suppressing overvoltage using a reactive current reduction loop. Journal of International Council on Electrical Engineering, 2016, 6, 140-145.	0.4	3
24	Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant. IEEE Transactions on Sustainable Energy, 2016, 7, 279-288.	8.8	191
25	Frequency Control Support of a Doubly-Fed Induction Generator Based on the Torque Limit. IEEE Transactions on Power Systems, 2016, 31, 4575-4583.	6.5	116
26	Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator. IEEE Transactions on Sustainable Energy, 2016, 7, 924-933.	8.8	117
27	Adaptive <i>Q–V</i> Scheme for the Voltage Control of a DFIG-Based Wind Power Plant. IEEE Transactions on Power Electronics, 2016, 31, 3586-3599.	7.9	60
28	Communication Network Architectures for Smart-House with Renewable Energy Resources. Energies, 2015, 8, 8716-8735.	3.1	39
29	Modified stepwise inertial control using the mechanical input and electrical output curves of a doubly fed induction generator. , 2015, , .		11
30	Multilevel Modular DC/DC Power Converter for High-Voltage DC-Connected Offshore Wind Energy Applications. IEEE Transactions on Industrial Electronics, 2015, 62, 2879-2890.	7.9	69
31	Development of a Compensation Scheme for a Measurement Voltage Transformer Using the Hysteresis Characteristics of a Core. Energies, 2015, 8, 3245-3257.	3.1	0
32	Modeling and simulation of ICT network architecture for cyber-physical wind energy system. , 2015, , .		4
33	Energy Management Based on the Photovoltaic HPCS With an Energy Storage Device. IEEE Transactions on Industrial Electronics, 2015, 62, 4608-4617.	7.9	80
34	Induced Voltages Ratio-Based Algorithm for Fault Detection, and Faulted Phase and Winding Identification of a Three-Winding Power Transformer. Energies, 2014, 7, 6031-6049.	3.1	15
35	Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power. Energies, 2014, 7, 4281-4299.	3.1	20
36	Saturation Detection-Based Blocking Scheme for Transformer Differential Protection. Energies, 2014, 7, 4571-4587.	3.1	6

#	Article	IF	CITATIONS
37	A model-free method for wind power plant control with variable wind. , 2014, , .		5
38	Intra-day unit commitment for wind farm using model predictive control method. , 2013, , .		4
39	Probabilistic Approach to Optimizing Active and Reactive Power Flow in Wind Farms Considering Wake Effects. Energies, 2013, 6, 5717-5737.	3.1	11
40	Model predictive control in dynamic economic dispatch using Weibull distribution. , 2013, , .		7
41	Development of a compensating algorithm for an iron-cored measurement current transformer. , 2009, , .		3
42	A study on the optimal search method of the hybrid intelligent voltage/reactive power control system. , 2009, , .		1
43	Estimation of the primary and secondary leakage inductances for a Y-Δtransformer. , 2007, , .		0
44	Distance relay suitable for use with a measurement type current transformer. , 2007, , .		2