Thierry Conard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4453865/publications.pdf

Version: 2024-02-01

136950 161849 4,126 197 32 54 citations h-index g-index papers 198 198 198 4232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interfacial control of $SrTiO3/Si(001)$ epitaxy and its effect on physical and optical properties. Journal of Crystal Growth, 2022, 582, 126524.	1.5	1
2	Comparison and complementarity of QUASES-Tougaard and SESSA software. Applied Surface Science, 2022, 585, 152758.	6.1	3
3	HAXPES on SiO2 with Ga Kα photons. Surface Science Spectra, 2022, 29, .	1.3	2
4	High-energy x-ray photoelectron spectroscopy spectra of InP measured by Cr Kα. Surface Science Spectra, 2022, 29, 014018.	1.3	1
5	High-energy x-ray photoelectron spectroscopy spectra of TiO2 measured by Cr Kl±. Surface Science Spectra, 2022, 29, 014017.	1.3	2
6	High-energy x-ray photoelectron spectroscopy spectra of Al2O3 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014021.	1.3	1
7	High-energy x-ray photoelectron spectroscopy spectra of SiO2 measured by Cr Kl±. Surface Science Spectra, 2022, 29, .	1.3	4
8	High-energy x-ray photoelectron spectroscopy spectra of HfO2 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014019.	1.3	1
9	High energy x-ray photoelectron spectroscopy spectra of Si3N4 measured by Cr Kα. Surface Science Spectra, 2022, 29, 014013.	1.3	1
10	High-energy x-ray photoelectron spectroscopy on Si3N4 with Ga KÎ \pm photons. Surface Science Spectra, 2022, 29, .	1.3	1
11	High-energy x-ray photoelectron spectroscopy spectra of TiN measured by Cr Kl±. Surface Science Spectra, 2022, 29, 014016.	1.3	1
12	HAXPES spectra of NaCl measured by Cr Kα. Surface Science Spectra, 2022, 29, 014022.	1.3	1
13	HAXPES spectra of GaAs measured by Cr Kα. Surface Science Spectra, 2022, 29, 014023.	1.3	1
14	Properties of ultrathin molybdenum films for interconnect applications. Materialia, 2022, 24, 101511.	2.7	15
15	HAXPES of GaN film on Si with Cr Kα photons. Surface Science Spectra, 2021, 28, 014006.	1.3	1
16	Nanomechanical Characterization of Organic Surface Passivation Films on 50 nm Patterns during Area-Selective Deposition. ACS Applied Electronic Materials, 2021, 3, 2622-2630.	4.3	7
17	Engineering high quality and conformal ultrathin SiNx films by PEALD for downscaled and advanced CMOS nodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	4
18	Photoanodic oxidation of InP in acid solution and its surface chemistry: On the interplay of photons, protons and hydrodynamics. Electrochimica Acta, 2020, 360, 136872.	5.2	1

#	Article	IF	CITATIONS
19	A Correlative ToF-SIMS/SPM Methodology for Probing 3D Devices. Analytical Chemistry, 2020, 92, 11413-11419.	6.5	11
20	Achieving reproducible data: Examples from surface analysis in semiconductor technology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	8
21	Surface analysis in the semiconductor industry: Present use and future possibilities. Surface and Interface Analysis, 2020, 52, 786-791.	1.8	4
22	Peculiar alignment and strain of 2D WSe ₂ grown by van der Waals epitaxy on reconstructed sapphire surfaces. Nanotechnology, 2019, 30, 465601.	2.6	17
23	Material-Selective Doping of 2D TMDC through Al <i>_x</i> <col/> _yEncapsulation. ACS Applied Materials & Amp; Interfaces, 2019, 11, 42697-42707.	8.0	37
24	Impact of SiO ₂ surface composition on trimethylsilane passivation for area-selective deposition. Journal of Materials Chemistry C, 2019, 7, 11911-11918.	5.5	32
25	Self-focusing SIMS: A metrology solution to area selective deposition. Applied Surface Science, 2019, 476, 594-599.	6.1	10
26	Spin-on-diffussants for doping in transition metal dichalcogenide semiconductors. Applied Physics Letters, 2019, 114, 212102.	3.3	1
27	Record Gm _{SAT} /SS _{SAT} and PBTI Reliability in Si-Passivated Ge nFinFETs by Improved Gate-Stack Surface Preparation. IEEE Transactions on Electron Devices, 2019, 66, 5387-5392.	3.0	4
28	Impact of Ge-Oxide-Scavenging on Low-T Steam Oxidation and Passivation of Bi-Axially Strained Si0.75Ge0.25. ECS Transactions, 2019, 93, 71-72.	0.5	1
29	Nanoscale etching of III-V semiconductors in acidic hydrogen peroxide solution: GaAs and InP, a striking contrast in surface chemistry. Applied Surface Science, 2019, 465, 596-606.	6.1	10
30	A Multi-Technique Approach for a Complete Thin Film Characterisation. Journal of Surface Analysis (Online), 2019, 26, 184-185.	0.1	0
31	MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates. Journal of Applied Physics, 2018, 123, .	2.5	26
32	Chemical Vapor Deposition of Azidoalkylsilane Monolayer Films. Langmuir, 2018, 34, 1400-1409.	3.5	22
33	Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?. Applied Surface Science, 2018, 444, 633-641.	6.1	8
34	The conversion mechanism of amorphous silicon to stoichiometric WS ₂ . Journal of Materials Chemistry C, 2018, 6, 4122-4130.	5.5	9
35	Nucleation mechanism during WS2 plasma enhanced atomic layer deposition on amorphous Al2O3 and sapphire substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	30
36	Two-Dimensional Crystal Grain Size Tuning in WS ₂ Atomic Layer Deposition: An Insight in the Nucleation Mechanism. Chemistry of Materials, 2018, 30, 7648-7663.	6.7	57

#	Article	IF	Citations
37	Nanoscale Etching of GaAs and InP in Acidic H ₂ O ₂ Solution: A Striking Contrast in Kinetics and Surface Chemistry. Solid State Phenomena, 2018, 282, 48-51.	0.3	1
38	Direct imaging and manipulation of ionic diffusion in mixed electronic–ionic conductors. Nanoscale, 2018, 10, 12564-12572.	5.6	5
39	Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS. Beilstein Journal of Nanotechnology, 2018, 9, 1623-1628.	2.8	10
40	Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS ₂ from WF ₆ , H ₂ Plasma, and H ₂ S. Chemistry of Materials, 2017, 29, 2927-2938.	6.7	74
41	Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2. Journal of Chemical Physics, 2017, 146, 052810.	3.0	41
42	MoS ₂ Functionalization with a Sub-nm Thin SiO ₂ Layer for Atomic Layer Deposition of High-κ Dielectrics. Chemistry of Materials, 2017, 29, 6772-6780.	6.7	27
43	Optimization and upscaling of spin coating with organosilane monolayers for low-k pore sealing. Microelectronic Engineering, 2017, 167, 32-36.	2.4	6
44	The Impact of Dummy Gate Processing on Si-Cap-Free SiGe Passivation: A Physical Characterization Study on Strained SiGe 25% and 45%. ECS Transactions, 2017, 80, 155-162.	0.5	1
45	Understanding Physico-Chemical Aspects in the Depth Profiling of Polymer:Fullerene Layers. Journal of Physical Chemistry C, 2016, 120, 28074-28082.	3.1	6
46	Density and Capture Cross-Section of Interface Traps in GeSnO ₂ and GeO ₂ Grown on Heteroepitaxial GeSn. ACS Applied Materials & Interfaces, 2016, 8, 13181-13186.	8.0	23
47	Characterization of Patterned Porous Low-kDielectrics: Surface Sealing and Residue Removal by Wet Processing/Cleaning. ECS Journal of Solid State Science and Technology, 2016, 5, N5-N9.	1.8	2
48	Sacrificial Self-Assembled Monolayers for the Passivation of GaAs (100) Surfaces and Interfaces. Chemistry of Materials, 2016, 28, 5689-5701.	6.7	20
49	Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure. Applied Surface Science, 2016, 384, 152-160.	6.1	5
50	Insights into the nanoscale lateral and vertical phase separation in organic bulk heterojunctions via scanning probe microscopy. Nanoscale, 2016, 8, 3629-3637.	5.6	6
51	Self Focusing SIMS: Probing thin film composition in very confined volumes. Applied Surface Science, 2016, 365, 143-152.	6.1	22
52	Multilayer MoS ₂ growth by metal and metal oxide sulfurization. Journal of Materials Chemistry C, 2016, 4, 1295-1304.	5.5	57
53	Transition metal contacts to graphene. Applied Physics Letters, 2015, 107, .	3.3	34
54	Ozoneâ€Based Atomic Layer Deposition of Gd ₂ O ₃ from Tris(isopropylâ€eyclopentadienyl)gadolinium: Growth Characteristics and Surface Chemistry. Chemical Vapor Deposition, 2015, 21, 352-359.	1.3	6

#	Article	IF	CITATIONS
55	Root-Cause Failure Analysis of Photocurrent Loss in Polythiophene:Fullerene-Based Inverted Solar Cells. ACS Applied Materials & Solar Cells. ACS ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS ACS ACS Applied Materials & Solar Cells. ACS	8.0	28
56	Understanding the EOT–Jg degradation in Ru/SrTiOx/Ru metal–insulator–metal capacitors formed with Ru atomic layer deposition. Microelectronic Engineering, 2015, 147, 108-112.	2.4	12
57	Evaluation of the electrical contact area in contact-mode scanning probe microscopy. Journal of Applied Physics, 2015, 117, .	2.5	46
58	Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry. Applied Surface Science, 2015, 324, 251-257.	6.1	11
59	Study of Wet Surface Activation Routes to Enable the Deposition of Monomolecular Organic Thin Films on k 2.0 Porous Dielectrics. ECS Journal of Solid State Science and Technology, 2014, 3, N3106-N3111.	1.8	7
60	Structural and Optical Properties of Amorphous and Crystalline GeSn Layers on Si. ECS Journal of Solid State Science and Technology, 2014, 3, P403-P408.	1.8	17
61	Al ₂ O ₃ /InGaAs Metal-Oxide-Semiconductor Interface Properties: Impact of Gd ₂ O ₃ and Sc ₂ O ₃ Interfacial Layers by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2014, 3, N133-N141.	1.8	17
62	Study of InP Surfaces after Wet Chemical Treatments. ECS Journal of Solid State Science and Technology, 2014, 3, N3016-N3022.	1.8	25
63	Pore sealing of k 2.0 dielectrics assisted by self-assembled monolayers deposited from vapor phase. Microelectronic Engineering, 2014, 120, 240-245.	2.4	24
64	Lightâ€Induced Degradation of Polymer:Fullerene Photovoltaic Devices: An Intrinsic or Materialâ€Dependent Failure Mechanism?. Advanced Energy Materials, 2014, 4, 1400848.	19.5	40
65	Gâ€SIMS analysis of organic solar cell materials. Surface and Interface Analysis, 2014, 46, 96-99.	1.8	0
66	Fundamental aspects of Ar _n ⁺ SIMS profiling of common organic semiconductors. Surface and Interface Analysis, 2014, 46, 54-57.	1.8	12
67	Degradation of deep ultraviolet photoresist by As-implantation studied by Ar-cluster beam profiling. Surface and Interface Analysis, 2013, 45, 406-408.	1.8	3
68	Characterization of organic solar cell materials by Gâ€SIMS. Surface and Interface Analysis, 2013, 45, 430-433.	1.8	4
69	Mechanism of Modification of Fluorocarbon Polymer by Ultraviolet Irradiation in Oxygen Atmosphere. ECS Journal of Solid State Science and Technology, 2013, 2, N93-N98.	1.8	14
70	Selective Protein Immobilization onto Gold Nanoparticles Deposited under Vacuum on a Protein-Repellent Self-Assembled Monolayer. Langmuir, 2013, 29, 15328-15335.	3.5	5
71	Atomic layer deposition of tantalum oxide and tantalum silicate from TaCl5, SiCl4, and O3: growth behaviour and film characteristics. Journal of Materials Chemistry C, 2013, 1, 5981.	5.5	6
72	Design of Mixed PEO/PAA Brushes with Switchable Properties Toward Protein Adsorption. Biomacromolecules, 2013, 14, 215-225.	5.4	66

#	Article	IF	Citations
73	Si cap passivation for Ge nMOS applications. Microelectronic Engineering, 2013, 109, 46-49.	2.4	8
74	Medium energy ion scattering for the high depth resolution characterisation of high-k dielectric layers of nanometer thickness. Applied Surface Science, 2013, 281, 8-16.	6.1	5
75	Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide. Chemistry of Materials, 2013, 25, 1078-1091.	6.7	33
76	Epitaxial Chemical Vapor Deposition of Silicon on an Oxygen Monolayer on Si(100) Substrates. ECS Solid State Letters, 2013, 2, P104-P106.	1.4	10
77	Characterization of Porous Structures in Advanced Low-kFilms with Thin TaN Layers Using Monoenergetic Positron Beams. Japanese Journal of Applied Physics, 2013, 52, 106501.	1.5	9
78	The Effects of Plasma Treatments and Subsequent Atomic Layer Deposition on the Pore Structure of a $k=2.0$ Low- $k=2.0$ Material. ECS Journal of Solid State Science and Technology, 2013, 2, N103-N109.	1.8	7
79	Thin layer composition profiling with angular resolved x-ray photoemission spectroscopy: Factors affecting quantitative results. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	10
80	Scaling the Ge Gate Stack: Toward Sub 1 nm EOT. ECS Journal of Solid State Science and Technology, 2012, 1, P127-P132.	1.8	3
81	Process Study and Characterization of VO ₂ Thin Films Synthesized by ALD Using TEMAV and O ₃ Precursors. ECS Journal of Solid State Science and Technology, 2012, 1, P169-P174.	1.8	48
82	Cleaning and Surface Preparation for SiGe and Ge Channel Device. Solid State Phenomena, 2012, 187, 19-22.	0.3	2
83	Si passivation for Ge pMOSFETs: Impact of Si cap growth conditions. Solid-State Electronics, 2011, 60, 116-121.	1.4	24
84	ToF–SIMS and XPS study of ion implanted 248nm deep ultraviolet (DUV) photoresist. Microelectronic Engineering, 2011, 88, 677-679.	2.4	4
85	Barrier and seed repair performance of thin RuTa films for Cu interconnects. Microelectronic Engineering, 2011, 88, 690-693.	2.4	8
86	Improved EOT and leakage current for metal–insulator–metal capacitor stacks with rutile TiO2. Microelectronic Engineering, 2011, 88, 1517-1520.	2.4	22
87	Degradation of 248 nm Deep UV Photoresist by Ion Implantation. Journal of the Electrochemical Society, 2011, 158, H785.	2.9	9
88	Atomic Layer Deposition of High- $\hat{\mathbb{I}}^{\mathbb{P}}$ Dielectrics on Sulphur-Passivated Germanium. Journal of the Electrochemical Society, 2011, 158, H687.	2.9	18
89	Atomic-Layer Deposition of Lutetium Aluminate Thin Films for Non-Volatile Memory Applications. ECS Transactions, 2011, 34, 473-478.	0.5	1
90	Lanthanide Aluminates as Dielectrics for Non-Volatile Memory Applications: Material Aspects. Journal of the Electrochemical Society, 2011, 158, H778-H784.	2.9	7

#	Article	IF	CITATIONS
91	Analysis of Ultra-Thin HfO2/SiOn/Si(001): Comparison of Three Different Techniques. Analytical Sciences, 2010, 26, 223-226.	1.6	7
92	(Invited) Exploring the ALD Al ₂ O ₃ /In _{0.53} Ga _{0.47} As and Al ₂ O ₃ /Ge Interface Properties: A Common Gate Stack Approach for Advanced III-V/Ge CMOS. ECS Transactions, 2010, 28, 173-183.	0.5	16
93	Combination of High-Resolution RBS and Angle-Resolved XPS: Accurate Depth Profiling of Chemical States. Journal of Surface Analysis (Online), 2009, 15, 225-228.	0.1	O
94	Comparison of Electrical Measurements with Structural Analysis of Thin High-k Hafnium-based Films. ECS Transactions, 2009, 25, 363-372.	0.5	1
95	The Importance of Moisture Control for EOT Scaling of Hf-Based Dielectrics. Journal of the Electrochemical Society, 2009, 156, H416.	2.9	9
96	Thermal and Plasma Enhanced Atomic Layer Deposition of Al[sub 2]O[sub 3] on GaAs Substrates. Journal of the Electrochemical Society, 2009, 156, H255.	2.9	17
97	Characterisation of High-k Containing Nanolayers by Reference-Free X-Ray Fluorescence Analysis with Synchrotron Radiation. ECS Transactions, 2009, 25, 293-300.	0.5	3
98	H[sub 2]O- and O[sub 3]-Based Atomic Layer Deposition of High- $\hat{\mathbb{Q}}$ Dielectric Films on GeO[sub 2] Passivation Layers. Journal of the Electrochemical Society, 2009, 156, G163.	2.9	31
99	Characterization of 248nm Deep Ultraviolet (DUV) Photoresist after Ion Implantation. ECS Transactions, 2009, 25, 187-194.	0.5	8
100	High-k dielectrics for future generation memory devices (Invited Paper). Microelectronic Engineering, 2009, 86, 1789-1795.	2.4	218
101	Performance improvement in narrow MuGFETs by gate work function and source/drain implant engineering. Solid-State Electronics, 2009, 53, 760-766.	1.4	6
102	Removal of post-etch photoresist and sidewall residues using organic solvent and additive combined with physical forces. Microelectronic Engineering, 2009, 86, 181-185.	2.4	29
103	Crystallization resistance of barium titanate zirconate ultrathin films from aqueous CSD: a study of cause and effect. Journal of Materials Chemistry, 2009, 19, 1115.	6.7	9
104	Depth-profiling of vertical sidewall nanolayers on structured wafers by grazing incidence X-ray flourescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1359-1364.	2.9	10
105	Aqueous solution–gel preparation of ultrathin ZrO2 films for gate dielectric application. Thin Solid Films, 2008, 516, 8343-8351.	1.8	23
106	Cesium near-surface concentration in low energy, negative mode dynamic SIMS. Applied Surface Science, 2008, 255, 1316-1319.	6.1	16
107	Characterization of post-etched photoresist and residues by various analytical techniques. Applied Surface Science, 2008, 255, 1408-1411.	6.1	4
108	Impact of Process Optimizations on the Electrical Performance of High-k Layers Deposited by Aqueous Chemical Solution Deposition. Journal of the Electrochemical Society, 2008, 155, G91.	2.9	24

#	Article	IF	Citations
109	Atomic Layer Deposition of Hafnium Oxide on Ge and GaAs Substrates: Precursors and Surface Preparation. Journal of the Electrochemical Society, 2008, 155, H937.	2.9	35
110	Physico-chemical Characterization of Thin Oxide Films: Difficulties and Solutions. Materials Research Society Symposia Proceedings, 2008, 1073, 1.	0.1	0
111	The Impact of Stacked Cap Layers on Effective Work Function With HfSiON and SiON Gate Dielectrics. IEEE Electron Device Letters, 2008, 29, 743-745.	3.9	13
112	Thermal stability of dysprosium scandate thin films. Applied Physics Letters, 2008, 92, .	3.3	27
113	Challenges with Respect to High-k/Metal Gate Stack Etching and Cleaning. ECS Transactions, 2007, 11, 275-283.	0.5	14
114	AVD and MOCVD TaCN-based Films for Gate Metal Applications on High k Gate Dielectrics. ECS Transactions, 2007, 11, 557-567.	0.5	5
115	Aqueous Chemical Solution Deposition. Electrochemical and Solid-State Letters, 2007, 10, G15.	2.2	16
116	Influence of elastic scattering of photoelectrons on angle-resolved x-ray photoelectron spectroscopy. Applied Physics Letters, 2007, 91, .	3.3	19
117	Postdeposition-Anneal Effect on Negative Bias Temperature Instability in HfSiON Gate Stacks. IEEE Transactions on Device and Materials Reliability, 2007, 7, 146-151.	2.0	10
118	Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films. Journal of Materials Research, 2007, 22, 3484-3493.	2.6	20
119	Electrical Passivation of the (100)Ge Surface by Its Thermal Oxide. ECS Transactions, 2007, 11, 451-459.	0.5	6
120	Screening of High-k Layers in MIS and MIM Capacitors Using Aqueous Chemical Solution Deposition. ECS Transactions, 2007, 11, 299-310.	0.5	6
121	Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films. Applied Physics Letters, 2007, 91, .	3.3	79
122	H2S exposure of a (100)Ge surface: Evidences for a ($2\tilde{A}$ -1) electrically passivated surface. Applied Physics Letters, 2007, 90, 222105.	3.3	32
123	Achieving Conduction Band-Edge Effective Work Functions by \$hbox{La}_{2}hbox{O}_{3}\$ Capping of Hafnium Silicates. IEEE Electron Device Letters, 2007, 28, 486-488.	3.9	36
124	Nitrogen Incorporation in HfSiO(N)/TaN Gate Stacks: Impact on Performances and NBTI. IEEE Electron Device Letters, 2007, 28, 613-615.	3.9	6
125	Growth of Dysprosiumâ€, Scandiumâ€, and Hafniumâ€based Third Generation Highâ€Ê Dielectrics by Atomic Vapor Deposition. Chemical Vapor Deposition, 2007, 13, 567-573.	1.3	25
126	Optimization of HfSiON using a design of experiment (DOE) approach on 0.45V Vt Ni-FUSI CMOS transistors. Microelectronics Reliability, 2007, 47, 521-524.	1.7	2

#	Article	IF	CITATIONS
127	Materials characterization of WNxCy, WNx and WCx films for advanced barriers. Microelectronic Engineering, 2007, 84, 2460-2465.	2.4	15
128	Effects of \$hbox{Al}_{2}hbox{O}_{3}\$ Dielectric Cap and Nitridation on Device Performance, Scalability, and Reliability for Advanced High- \$kappa\$/Metal Gate pMOSFET Applications. IEEE Transactions on Electron Devices, 2007, 54, 2738-2749.	3.0	15
129	Interface engineering for Ge metal-oxide–semiconductor devices. Thin Solid Films, 2007, 515, 6337-6343.	1.8	87
130	Mechanism of O2-anneal induced Vfb shifts of Ru gated stacks. Microelectronics Reliability, 2007, 47, 518-520.	1.7	3
131	Metallorganic Chemical Vapor Deposition of Dysprosium Scandate High-k Layers Using mmp-Type Precursors. Journal of the Electrochemical Society, 2006, 153, F219.	2.9	18
132	The use of angle resolved XPS to measure the fractional coverage of high-k dielectric materials on silicon and silicon dioxide surfaces. Applied Surface Science, 2006, 252, 8270-8276.	6.1	35
133	HfO2 as gate dielectric on Ge: Interfaces and deposition techniques. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 256-260.	3.5	68
134	Epitaxy solutions for Ge MOS technology. Thin Solid Films, 2006, 508, 292-296.	1.8	18
135	Study of CVD high-k gate oxides on high-mobility Ge and Ge/Si substrates. Thin Solid Films, 2006, 508, 1-5.	1.8	18
136	Electrical Properties of Atomic-Beam Deposited GeO[sub $1\hat{a}^2x$]N[sub x] \hat{a}^4 HfO[sub 2] Gate Stacks on Ge. Journal of the Electrochemical Society, 2006, 153, G1112.	2.9	15
137	Growth Studies and Reaction Mechanism of the Atomic Layer Deposition of Hafnium Oxide. ECS Transactions, 2006, 1, 433-446.	0.5	6
138	Evaluation of Nb(Si)N as Metal Gate Material. ECS Transactions, 2006, 1, 495-506.	0.5	1
139	Evaluation of Atomic Layer Deposited NbN and NbSiN as Metal Gate Materials. Journal of the Electrochemical Society, 2006, 153, G437.	2.9	12
140	Scaling to Sub-1â€,nm Equivalent Oxide Thickness with Hafnium Oxide Deposited by Atomic Layer Deposition. Journal of the Electrochemical Society, 2006, 153, F180.	2.9	45
141	Nucleation and Growth Behavior of Atomic Layer Deposited HfO[sub 2] Films on Silicon Oxide Starting Surfaces. Journal of the Electrochemical Society, 2006, 153, F205.	2.9	24
142	Effective work function modulation by controlled dielectric monolayer deposition. Applied Physics Letters, 2006, 89, 113505.	3.3	29
143	Effect of hafnium germanate formation on the interface of HfO2/germanium metal oxide semiconductor devices. Applied Physics Letters, 2006, 88, 141904.	3.3	67
144	Wet Etch Characteristics of Hafnium Silicate Layers. ECS Transactions, 2006, 1, 633-644.	0.5	1

#	Article	IF	CITATIONS
145	Grazing Incidence-X-ray Fluorescence Spectrometry for the Compositional Analysis of Nanometer-Thin HighKAPPA. Dielectric HfO2 Layers. Analytical Sciences, 2005, 21, 845-850.	1.6	17
146	The future of high-K on pure germanium and its importance for Ge CMOS. Materials Science in Semiconductor Processing, 2005, 8, 203-207.	4.0	18
147	Observation and characterization of defects in HfO2 high-K gate dielectric layers. Microelectronics Reliability, 2005, 45, 798-801.	1.7	5
148	Effective attenuation length of Al K \hat{l} ±-excited Si2p photoelectrons in SiO2, Al2O3 and HfO2 thin films. Journal of Electron Spectroscopy and Related Phenomena, 2005, 149, 37-44.	1.7	7
149	Interpretation of TOF–SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hy collisional computer simulation. Applied Physics A: Materials Science and Processing, 2005, 81, 71-77.	vbrid 2.3	7
150	Comparison of electric properties of ultra-thin thermal and plasma nitrided silicon oxides with different post-deposition treatments using C-AFM. Microelectronic Engineering, 2005, 80, 436-439.	2.4	6
151	Electrical Characterization of Capacitors with AVD-Deposited Hafnium Silicates as High-k Gate Dielectric. Journal of the Electrochemical Society, 2005, 152, F185.	2.9	14
152	Phase of reflection high-energy electron diffraction oscillations during (Ba,Sr)O epitaxy on Si(100): A marker of Sr barrier integrity. Applied Physics Letters, 2005, 87, 262905.	3.3	30
153	Impurity Incorporation during Copper Electrodeposition in the Curvature-Enhanced Accelerator Coverage Regime. Electrochemical and Solid-State Letters, 2005, 8, C95.	2.2	21
154	Atomic layer deposition of hafnium oxide on germanium substrates. Journal of Applied Physics, 2005, 97, 064104.	2.5	95
155	Remediation for TXRF saturation effects on microdroplet residues from preconcentration methods on semiconductor wafers. Journal of Analytical Atomic Spectrometry, 2005, 20, 652.	3.0	19
156	Advanced Material Characterization by TOFSIMS in Microelectronic., 2005,, 437-447.		0
157	Deposition of HfO2 on germanium and the impact of surface pretreatments. Applied Physics Letters, 2004, 85, 3824-3826.	3.3	104
158	Complex admittance analysis for La2Hf2O7/SiO2 high-κ dielectric stacks. Applied Physics Letters, 2004, 84, 260-262.	3.3	61
159	Bulk Properties of MOCVD-Deposited HfO[sub 2] Layers for High k Dielectric Applications. Journal of the Electrochemical Society, 2004, 151, F228.	2.9	16
160	Plasma Modification of Porous Low-k Dielectrics. Electrochemical and Solid-State Letters, 2004, 7, F49.	2.2	12
161	Composition and Growth Kinetics of the Interfacial Layer for MOCVD HfO[sub 2] Layers on Si Substrates. Journal of the Electrochemical Society, 2004, 151, F77.	2.9	31
162	Effect of Postdeposition Anneal Conditions on Defect Density of HfO[sub 2] Layers Measured by Wet Etching. Journal of the Electrochemical Society, 2004, 151, F269.	2.9	5

#	Article	IF	CITATIONS
163	MBE lanthanum-based high-k gate dielectrics as candidates for SiO2 gate oxide replacement. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 85-88.	3.5	37
164	The band structure of ALCVD AlZr- and AlHf-oxides as measured by XPS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 56-59.	3.5	11
165	On the reliability of SIMS depth profiles through HfO2-stacks. Applied Surface Science, 2004, 231-232, 569-573.	6.1	14
166	ToF-SIMS profiling of HfO2/Si stacks: influence of sputtering condition of profile shape. Applied Surface Science, 2004, 231-232, 574-580.	6.1	3
167	Nitrogen analysis in high-k stack layers: a challenge. Applied Surface Science, 2004, 231-232, 581-584.	6.1	7
168	X-ray photoelectron spectroscopy characterisation of high-k dielectric Al2O3 and HfO2 layers deposited on SiO2/Si surface. Applied Surface Science, 2004, 235, 21-25.	6.1	43
169	Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. Journal of Applied Physics, 2004, 96, 4878-4889.	2.5	132
170	Nitrogen analysis in high-k stack layers: a challenge. Applied Surface Science, 2004, 231-232, 581-581.	6.1	0
171	ToF-SIMS profiling of HfO2/Si stacks: influence of sputtering condition of profile shape. Applied Surface Science, 2004, 231-232, 574-574.	6.1	0
172	Depth profiling of ZrO2/SiO2/Si stacks—a TOF-SIMS and computer simulation study. Applied Surface Science, 2004, 231-232, 603-608.	6.1	4
173	Surface preparation and interfacial stability of high-k dielectrics deposited by atomic layer chemical vapor deposition. Microelectronic Engineering, 2003, 65, 259-272.	2.4	48
174	TOF-SIMS as a rapid diagnostic tool to monitor the growth mode of thin (high k) films. Applied Surface Science, 2003, 203-204, 400-403.	6.1	15
175	Ion-bombardment artifact in TOF-SIMS analysis of ZrO2/SiO2/Si stacks. Applied Surface Science, 2003, 203-204, 523-526.	6.1	18
176	Interfacial properties of ZrO2 on silicon. Journal of Applied Physics, 2003, 93, 5945-5952.	2.5	64
177	Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si–O–H) and thermal oxide (SiO2 or Si–O–N) underlayers. Journal of Applied Physics, 2002, 92, 7168-7174.	2.5	268
178	Factors affecting an efficient sealing of porous low-kdielectrics by physical vapor deposition Ta(N) thin films. Journal of Applied Physics, 2002, 92, 1548-1554.	2.5	41
179	Characterisation of ALCVD Al2O3–ZrO2 nanolaminates, link between electrical and structural properties. Journal of Non-Crystalline Solids, 2002, 303, 123-133.	3.1	92
180	Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2002, 303, 83-87.	3.1	163

#	Article	IF	CITATIONS
181	A quantitative adhesion study between contacting materials in Cu damascene structures. Applied Surface Science, 2002, 201, 20-34.	6.1	12
182	Enhancement of ALCVDâ,,¢ TiN growth on Si–O–C and α-SiC:H films by O2-based plasma treatments. Microelectronic Engineering, 2002, 60, 59-69.	2.4	26
183	Removal of Submicrometer Particles from Silicon Wafer Surfaces Using HF-Based Cleaning Mixtures. Journal of the Electrochemical Society, 2001, 148, G683.	2.9	35
184	Controlled Deposition of Organic Contamination and Removal with Ozone-Based Cleanings. Journal of the Electrochemical Society, 2001, 148, G118.	2.9	17
185	Effects of Low-Thermal-Budget Treatments on the Porous Si Material Properties. Journal of Porous Materials, 2000, 7, 67-71.	2.6	5
186	Interaction of a Ti-capped Co thin film with Si3N4. Applied Physics Letters, 2000, 77, 4307-4309.	3.3	1
187	Evaluation of Time-of-Flight Secondary Ion Mass Spectrometry for Metal Contamination Monitoring on Si Wafer Surfaces. Journal of the Electrochemical Society, 2000, 147, 1915.	2.9	20
188	A chemical role of refractory metal caps in Co silicidation: Evidence of SiO ₂ reduction by Ti cap. Journal of Materials Research, 1999, 14, 4402-4408.	2.6	4
189	Analyses of Post Metal Etch Cleaning in Downstream  H 2 O  â€â€‰Based Plasma Follow Journal of the Electrochemical Society, 1999, 146, 3843-3851.	ed ₂ by a W	et ₈ Chemistry
190	Chemical and Electrical Characterization of the Interaction of BCl3 / Cl2 Etching and  CF 4 Stripping Plasmas with Aluminum Surfaces. Journal of the Electrochemical Society, 1999, 146, 4230-4235.	./ â€% 2.9	‰H 2â€ 7
191	Characterization of the Post Dryâ€Etch Cleaning of Silicon for Tiâ€Selfâ€Aligned Silicide Technology. Journal of the Electrochemical Society, 1999, 146, 1549-1556.	2.9	7
192	Electron spectroscopy study of the interface. Surface Science, 1996, 359, 82-92.	1.9	17
193	Photoemission study of the BiCuO interface. Surface Science, 1996, 369, 177-184.	1.9	2
194	Copper/oxide interface formation: a vibrational and electronic investigation by electron spectroscopies. Surface Science, 1992, 265, 31-38.	1.9	22
195	Wet Chemical Cleaning of InP and InGaAs. Solid State Phenomena, 0, 187, 27-31.	0.3	10
196	Modification of Post-Etch Residues by UV for Wet Removal. Solid State Phenomena, 0, 187, 207-210.	0.3	0
197	Characterization of Etch Residues Generated on Damascene Structures. Solid State Phenomena, 0, 255, 227-231.	0.3	O