Sergio Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4453607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 2015, 34, 1993-2024.	5.4	3,589
2	Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Transactions on Medical Imaging, 2016, 35, 1240-1251.	5.4	1,825
3	Retinal vessel segmentation based on Fully Convolutional Neural Networks. Expert Systems With Applications, 2018, 112, 229-242.	4.4	217
4	On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiology: Artificial Intelligence, 2020, 2, e190043.	3.0	212
5	MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans. Computational Intelligence and Neuroscience, 2015, 2015, 1-16.	1.1	179
6	Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation. Medical Image Analysis, 2018, 44, 228-244.	7.0	76
7	Automatic Brain Tumor Grading from MRI Data Using Convolutional Neural Networks and Quality Assessment. Lecture Notes in Computer Science, 2018, , 106-114.	1.0	76
8	Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recognition, 2018, 82, 105-117.	5.1	67
9	Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features. , 2015, 2015, 3037-40.		66
10	Adaptive Feature Recombination and Recalibration for Semantic Segmentation With Fully Convolutional Networks. IEEE Transactions on Medical Imaging, 2019, 38, 2914-2925.	5.4	58
11	Deep Convolutional Neural Networks for the Segmentation of Gliomas in Multi-sequence MRI. Lecture Notes in Computer Science, 2016, , 131-143.	1.0	57
12	Automatic brain tissue segmentation in MR images using Random Forests and Conditional Random Fields. Journal of Neuroscience Methods, 2016, 270, 111-123.	1.3	50
13	On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: A preliminary study. , 2017, , .		29
14	Multi-surface segmentation of OCT images with AMD using sparse high order potentials. Biomedical Optics Express, 2017, 8, 281.	1.5	29
15	Adaptive Feature Recombination and Recalibration for Semantic Segmentation: Application to Brain Tumor Segmentation in MRI. Lecture Notes in Computer Science, 2018, , 706-714.	1.0	28
16	Augmenting data when training a CNN for retinal vessel segmentation: How to warp?. , 2017, , .		26
17	Artificial intelligence–powered programmed death ligandÂ1 analyser reduces interobserver variation in tumour proportion score for non–small cell lung cancer with better prediction of immunotherapy response. European Journal of Cancer, 2022, 170, 17-26.	1.3	21
18	Random decision forests for automatic brain tumor segmentation on multi-modal MRI images. , 2015, , .		18

SERGIO PEREIRA

#	Article	IF	CITATIONS
19	Enhancing Clinical MRI Perfusion Maps with Data-Driven Maps of Complementary Nature for Lesion Outcome Prediction. Lecture Notes in Computer Science, 2018, , 107-115.	1.0	16
20	Combining unsupervised and supervised learning for predicting the final stroke lesion. Medical Image Analysis, 2021, 69, 101888.	7.0	14
21	Multi-stage Deep Layer Aggregation forÂBrain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 179-188.	1.0	11
22	Crime Prediction Using Regression and Resources Optimization. Lecture Notes in Computer Science, 2015, , 513-524.	1.0	10
23	A Phase II Study of Nivolumab plus Gemcitabine in Patients with Recurrent or Metastatic Nasopharyngeal Carcinoma (KCSG HN17–11). Clinical Cancer Research, 2022, 28, 4240-4247.	3.2	10
24	Sparse high order potentials for extending multi-surface segmentation of OCT images with drusen. , 2015, 2015, 2952-5.		5
25	Optical Filter for Providing the Required Illumination to Enable Narrow Band Imaging. Procedia Engineering, 2014, 87, 1414-1417.	1.2	4
26	A middleware for intelligent environments in ambient assisted living. , 2014, 2014, 5924-7.		3
27	Segmentation Squeeze-and-Excitation Blocks in Stroke Lesion Outcome Prediction. , 2019, , .		1
28	A Fully Automatic Tool for Counting Virchow-Robin Spaces in Magnetic Resonance Imaging for Lacunar Stroke Study. , 2015, , .		1
29	Modelling brain tissues intensities using dirichlet process. , 2017, , .		О