Andrea Alu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4453335/andrea-alu-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,090 171 727 99 h-index g-index citations papers 48,137 1,038 7.6 8.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
727	Observation of localized magnetic plasmon skyrmions <i>Nature Communications</i> , 2022 , 13, 8	17.4	11
726	Reciprocity of thermal diffusion in time-modulated systems <i>Nature Communications</i> , 2022 , 13, 167	17.4	4
725	Low-Symmetry Nanophotonics. <i>ACS Photonics</i> , 2022 , 9, 2-24	6.3	O
724	Metagratings for Efficient Wavefront Manipulation. <i>IEEE Photonics Journal</i> , 2022 , 14, 1-13	1.8	4
723	Hyperbolic shear polaritons in low-symmetry crystals <i>Nature</i> , 2022 , 602, 595-600	50.4	15
722	Nonlocal Scatterer for Compact Wave-Based Analog Computing <i>Physical Review Letters</i> , 2022 , 128, 073201	7.4	3
721	Photonics of time-varying media. <i>Advanced Photonics</i> , 2022 , 4,	8.1	17
720	Stability bounds on superluminal propagation in active structures <i>Nature Communications</i> , 2022 , 13, 1115	17.4	
719	MoirEDriven Topological Transitions and Extreme Anisotropy in Elastic Metasurfaces <i>Advanced Science</i> , 2022 , e2200181	13.6	1
718	Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency <i>Nature Communications</i> , 2022 , 13, 1696	17.4	21
717	Non-reciprocal parity-time symmetry breaking based on magneto-optical and gain/loss double ring resonators. <i>Optical Materials Express</i> , 2022 , 12, 1453	2.6	1
716	Room-temperature Observation of Near-intrinsic Exciton Linewidth in Monolayer WS <i>Advanced Materials</i> , 2022 , e2108721	24	2
715	Radio-transparent dipole antenna based on a metasurface cloak <i>Nature Communications</i> , 2022 , 13, 111	1 4 7.4	2
714	Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters <i>Nature Communications</i> , 2022 , 13, 2123	17.4	3
713	Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2 (Adv. Mater. 15/2022). <i>Advanced Materials</i> , 2022 , 34, 2270115	24	
712	Nonreciprocity and Faraday Rotation at Time Interfaces <i>Physical Review Letters</i> , 2022 , 128, 173901	7.4	10
711	Fundamentals of acoustic Willis media. <i>Wave Motion</i> , 2022 , 102930	1.8	

(2021-2022)

710	Rydberg atom-based field sensing enhancement using a split-ring resonator. <i>Applied Physics Letters</i> , 2022 , 120, 204001	3.4	2
709	Parity-Time Symmetry and Exceptional Points [Electromagnetic Perspectives]. <i>IEEE Antennas and Propagation Magazine</i> , 2021 , 63, 110-121	1.7	1
708	Optomechanical dissipative solitons. <i>Nature</i> , 2021 , 600, 75-80	50.4	3
707	Temporal switching to extend the bandwidth of thin absorbers. <i>Optica</i> , 2021 , 8, 24	8.6	19
706	Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. <i>Science Advances</i> , 2021 , 7, eabj1198	14.3	6
705	Propagation and scattering effects in temporal metastructures. <i>Journal of Physics: Conference Series</i> , 2021 , 2015, 012120	0.3	
704	Overcoming Intensity Saturation in Nonlinear Multiple-Quantum-Well Metasurfaces for High-Efficiency Frequency Upconversion. <i>Advanced Materials</i> , 2021 , e2106902	24	
703	Highly Chiral Exceptional Point in Perturbed Coupled Resonators. <i>Journal of Physics: Conference Series</i> , 2021 , 2015, 012122	0.3	
702	Temporal Parity-Time Symmetry for Extreme Energy Transformations. <i>Physical Review Letters</i> , 2021 , 127, 153903	7.4	7
701	Topological phonon-polariton funneling in midinfrared metasurfaces. <i>Science</i> , 2021 , 374, 225-227	33.3	10
700	Topological photonics and beyond: introduction. <i>Photonics Research</i> , 2021 , 9, TPB1	6	O
699	Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. <i>Nano Letters</i> , 2021 , 21, 973-979	11.5	21
698	Broadband Field Localization, Density of States, and Nonlinearity Enhancement in Nonreciprocal and Topological Hotspots. <i>Physical Review Applied</i> , 2021 , 15,	4.3	1
697	Optically transparent microwave absorber based on water-based moth-eye structures. <i>Optics Express</i> , 2021 , 29, 9190-9198	3.3	7
696	Temporal multilayer structures for designing higher-order transfer functions using time-varying metamaterials. <i>Applied Physics Letters</i> , 2021 , 118, 101901	3.4	27
695	Near-Field Characterization of Higher-Order Topological Photonic States at Optical Frequencies. <i>Advanced Materials</i> , 2021 , 33, e2004376	24	9
694	Wavefront-selective Fano resonant metasurfaces. Advanced Photonics, 2021, 3,	8.1	13
693	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. <i>Advanced Materials</i> , 2021 , 33, e2007236	24	5

692	Free-Space Nonreciprocal Transmission Based on Nonlinear Coupled Fano Metasurfaces. <i>Photonics</i> , 2021 , 8, 139	2.2	5
691	Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces. <i>Optica</i> , 2021 , 8, 606	8.6	5
690	Surface-Wave Propagation on Non-Hermitian Metasurfaces With Extreme Anisotropy. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 69, 2060-2071	4.1	4
689	Twistronics for photons: opinion. <i>Optical Materials Express</i> , 2021 , 11, 1377	2.6	14
688	Quantum Embedded Superstates. Advanced Quantum Technologies, 2021, 4, 2000121	4.3	3
687	Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres (Adv. Mater. 20/2021). <i>Advanced Materials</i> , 2021 , 33, 2170153	24	O
686	Odd Willis coupling induced by broken time-reversal symmetry. <i>Nature Communications</i> , 2021 , 12, 2615	17.4	6
685	Higher-order topolectrical semimetal realized via synthetic gauge fields. APL Photonics, 2021 , 6, 050802	2 5.2	3
684	Ultra-Wideband Switched-Capacitor Delays and Circulators Theory and Implementation. <i>IEEE Journal of Solid-State Circuits</i> , 2021 , 56, 1412-1424	5.5	2
683	Enhanced light-matter interactions at photonic magic-angle topological transitions. <i>Applied Physics Letters</i> , 2021 , 118, 211101	3.4	14
682	Tailoring Light with Layered and Moir[Metasurfaces. <i>Trends in Chemistry</i> , 2021 , 3, 342-358	14.8	29
681	All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. <i>Nature Communications</i> , 2021 , 12, 3746	17.4	18
68o	Acoustic nonreciprocity. Journal of Applied Physics, 2021, 129, 210903	2.5	5
679	Thermal Metasurfaces: Complete Emission Control by Combining Local and Nonlocal Light-Matter Interactions. <i>Physical Review X</i> , 2021 , 11,	9.1	8
678	Optical isolator based on chiral light-matter interactions in a ring resonator integrating a dichroic magneto-optical material. <i>Applied Physics Letters</i> , 2021 , 118, 241104	3.4	3
677	Detection of Subsurface, Nanometer-Scale Crystallographic Defects by Nonlinear Light Scattering and Localization. <i>Advanced Optical Materials</i> , 2021 , 9, 2002252	8.1	O
676	Non-Foster acoustic radiation from an active piezoelectric transducer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
675	Unitary Excitation Transfer between Coupled Cavities Using Temporal Switching. <i>Physical Review Letters</i> , 2021 , 127, 013902	7.4	1

(2021-2021)

674	Gain-Free Parity-Time Symmetry for Evanescent Fields. <i>Physical Review Letters</i> , 2021 , 127, 014301	7.4	1
673	Experimental observation of topological Z exciton-polaritons in transition metal dichalcogenide monolayers. <i>Nature Communications</i> , 2021 , 12, 4425	17.4	12
672	Topological insulator in two synthetic dimensions based on an optomechanical resonator. <i>Optica</i> , 2021 , 8, 1024	8.6	2
671	Efficient Analysis of Wave Propagation in Metasurface Arrays Based on Eigenvalue Perturbation. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 2706-2714	4.9	1
670	Analogue computing with metamaterials. <i>Nature Reviews Materials</i> , 2021 , 6, 207-225	73.3	63
669	Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformations. <i>Nano Letters</i> , 2021 , 21, 1246-1252	11.5	4
668	Universal Frequency-Domain Analysis of N-Path Networks. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 569-580	3.9	1
667	Dual-Layer Radio-Transparent Dielectric Core Metasurface Antenna. <i>IEEE Open Journal of Antennas and Propagation</i> , 2021 , 2, 585-590	1.9	2
666	Tunable plasmonic bound states in the continuum in the visible range. <i>Physical Review B</i> , 2021 , 103,	3.3	18
665	Dual-Circularly Polarized Topological Patch Antenna With Pattern Diversity. <i>IEEE Access</i> , 2021 , 9, 4876	9-4,8 , 77(6 3
665 664	Dual-Circularly Polarized Topological Patch Antenna With Pattern Diversity. <i>IEEE Access</i> , 2021 , 9, 4876. . <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 1-1	9-4877(4.9	6 ₃
664	. IEEE Transactions on Antennas and Propagation, 2021 , 1-1		7
664	. IEEE Transactions on Antennas and Propagation, 2021, 1-1 Solving integral equations with inverse-designed metagratings at optical wavelengths 2021,	4.9	7
664 663 662	. IEEE Transactions on Antennas and Propagation, 2021, 1-1 Solving integral equations with inverse-designed metagratings at optical wavelengths 2021, Homogenization and design of acoustic Willis metasurfaces. Physical Review B, 2021, 103, Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters,	4·9 3·3	7 1 3
664 663 662	. IEEE Transactions on Antennas and Propagation, 2021, 1-1 Solving integral equations with inverse-designed metagratings at optical wavelengths 2021, Homogenization and design of acoustic Willis metasurfaces. Physical Review B, 2021, 103, Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters, 2021, 118, 053302	3·3 3·4	7 1 3
664 663 662 660	. IEEE Transactions on Antennas and Propagation, 2021, 1-1 Solving integral equations with inverse-designed metagratings at optical wavelengths 2021, Homogenization and design of acoustic Willis metasurfaces. Physical Review B, 2021, 103, Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters, 2021, 118, 053302 Chiral Quasi-Bound States in the Continuum. Physical Review Letters, 2021, 126, 073001 Glide-Symmetric Acoustic Waveguides for Extreme Sensing and Isolation. Physical Review Applied,	4.93.33.47.4	7 1 3 2 36

656	Nonlinearity-Induced NonreciprocityPart II. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 69, 3584-3597	4.1	9
655	Nonlinearity-Induced NonreciprocityPart I. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2021 , 69, 3569-3583	4.1	10
654	Design of High-Q Passband Filters Implemented Through Multipolar All-Dielectric Metasurfaces. <i>IEEE Transactions on Antennas and Propagation</i> , 2021 , 69, 5142-5147	4.9	5
653	Ghost hyperbolic surface polaritons in bulk anisotropic crystals. <i>Nature</i> , 2021 , 596, 362-366	50.4	22
652	Extreme anisotropy and dispersion engineering in locally resonant acoustic metamaterials. <i>Journal of the Acoustical Society of America</i> , 2021 , 150, 2040	2.2	5
651	Acoustic spoof surface plasmon polaritons for filtering, isolation and sensing. <i>Results in Physics</i> , 2021 , 28, 104645	3.7	1
650	Broadband Topological Slow Light through Brillouin Zone Winding. <i>Physical Review Letters</i> , 2021 , 127, 123601	7.4	2
649	Interface nano-optics with van der Waals polaritons. <i>Nature</i> , 2021 , 597, 187-195	50.4	28
648	Magnetless Circulators Based on Synthetic Angular-Momentum Bias: Recent Advances and Applications. <i>IEEE Antennas and Propagation Magazine</i> , 2021 , 0-0	1.7	О
647	Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. <i>Nature Communications</i> , 2021 , 12, 486	17.4	16
646	Scalable Metagrating for Efficient Ultrasonic Focusing. Physical Review Applied, 2021, 16,	4.3	1
645	Loss-Assisted Metasurface at an Exceptional Point. ACS Photonics, 2020, 7, 3321-3327	6.3	8
644	Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities. <i>Nature Communications</i> , 2020 , 11, 6086	17.4	32
643	Scattering cancellation technique for acoustic spinning objects. <i>Physical Review B</i> , 2020 , 101,	3.3	7
642	Virtual Critical Coupling. ACS Photonics, 2020, 7, 1468-1475	6.3	14
641	Virtual Parity-Time Symmetry. <i>Physical Review Letters</i> , 2020 , 124, 193901	7.4	23
640	Topological polaritons and photonic magic angles in twisted ⊞MoO bilayers. <i>Nature</i> , 2020 , 582, 209-213	50.4	174
639	Robust Multiplexing with Topolectrical Higher-Order Chern Insulators. <i>Physical Review Applied</i> , 2020 , 13,	4.3	6

Dual-Polarization Analog 2D Image Processing with Nonlocal Metasurfaces. ACS Photonics, 2020, 7, 179%1805 26 638 Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces. 15.6 637 116 Advanced Functional Materials, 2020, 30, 1910610 Metamaterials and Metasurfaces Historical Context, Recent Advances, and Future Directions. IEEE 636 26 4.9 Transactions on Antennas and Propagation, 2020, 68, 1223-1231 Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nature Photonics, 2020, 14, 369-374 33.9 635 73 Robust Scattered Fields from Adiabatically Driven Targets around Exceptional Points. Physical 634 7.4 4 Review Letters, 2020, 124, 133905 Reconfigurable Acoustic Metagrating for High-Efficiency Anomalous Reflection. Physical Review 633 22 4.3 Applied, **2020**, 13, 632 Line Waves in Non-Hermitian Metasurfaces. ACS Photonics, 2020, 7, 2064-2072 6.3 4 Berreman Embedded Eigenstates for Narrow-Band Absorption and Thermal Emission. Physical 631 19 4.3 Review Applied, 2020, 13, Routing Optical Spin and Pseudospin with Metasurfaces. Physical Review Applied, 2020, 14, 630 4.3 4 Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials, 2020, 5, 667-685 629 92 73.3 Scattering theory and cancellation of gravity-flexural waves of floating plates. Physical Review B, 628 2 3.3 2020, 101, New Self-Organization Route to Tunable Narrowband Optical Filters and Polarizers Demonstrated 627 8.1 13 with ZnOInWO4 Eutectic Composite. Advanced Optical Materials, 2020, 8, 1901617 Demonstration of a quantized acoustic octupole topological insulator. *Nature Communications*, 626 17.4 43 2020, 11, 2108 Eutectic Nano/Microstructure: New Self-Organization Route to Tunable Narrowband Optical Filters and Polarizers Demonstrated with ZnOInWO4 Eutectic Composite (Advanced Optical Materials 625 8.1 7/2020). Advanced Optical Materials, **2020**, 8, 2070027 Resonant Metagratings for Spectral and Angular Control of Light for Colored Rooftop 624 6.1 7 Photovoltaics. ACS Applied Energy Materials, 2020, 3, 3150-3156 Efficient Focusing with Large Numerical Aperture Using a Hybrid Metalens. Physical Review Applied, 623 18 4.3 2020, 13, Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic 622 14.3 50 metamaterial. Science Advances, 2020, 6, eaay4166

. Proceedings of the IEEE, 2020, 108, 628-654

621

14.3

18

620	Moir[Hyperbolic Metasurfaces. <i>Nano Letters</i> , 2020 , 20, 3217-3224	11.5	75
619	Manipulating the scattering pattern with non-Hermitian particle arrays. <i>Optics Express</i> , 2020 , 28, 19492-	-1;9;507	3
618	Nonreciprocal Devices in Silicon Photonics. <i>Optics and Photonics News</i> , 2020 , 31, 38	1.9	1
617	Nonreciprocal cavities and the time-bandwidth limit: reply. <i>Optica</i> , 2020 , 7, 1102	8.6	2
616	Tunable nanophotonics enabled by chalcogenide phase-change materials. <i>Nanophotonics</i> , 2020 , 9, 1189)- 62 41	134
615	Giant midinfrared nonlinearity based on multiple quantum well polaritonic metasurfaces. <i>Nanophotonics</i> , 2020 , 10, 667-678	6.3	5
614	Mantle cloaking for decoupling of interleaved phased antenna arrays in 5G applications 2020,		2
613	Inverse designed metagratings for far-field integral equations solving 2020,		1
612	Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design of Functional Metastructures. <i>Research</i> , 2020 , 2020, 8757403	7.8	11
611	Structuring Nonlinear Wavefront Emitted from Monolayer Transition-Metal Dichalcogenides. <i>Research</i> , 2020 , 2020, 9085782	7.8	25
610	Topological wave insulators: a review. <i>Comptes Rendus Physique</i> , 2020 , 21, 467-499	1.4	2
609	Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces 2020,		2
608	Phonon Polaritons and Hyperbolic Response in van der Waals Materials. <i>Advanced Optical Materials</i> , 2020 , 8, 1901393	8.1	49
607	One-Way Hyperbolic Metasurfaces Based on Synthetic Motion. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1739-1747	4.9	6
606	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1607-1617	4.9	55
605	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1851-1859	4.9	17
604	Directional Janus Metasurface. <i>Advanced Materials</i> , 2020 , 32, e1906352	24	111
603	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1542-1552	4.9	26

(2020-2020)

602	. IEEE Transactions on Antennas and Propagation, 2020 , 68, 1799-1811	4.9	13	
601	Decoupling and Cloaking of Interleaved Phased Antenna Arrays Using Elliptical Metasurfaces. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 4997-5002	4.9	18	
600	Higher-order topological states in photonic kagome crystals with long-range interactions. <i>Nature Photonics</i> , 2020 , 14, 89-94	33.9	91	
599	Gap-Plasmon-Enhanced Second-Harmonic Generation in Epsilon-Near-Zero Nanolayers. <i>ACS Photonics</i> , 2020 , 7, 174-179	6.3	13	
598	Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. <i>Nature Communications</i> , 2020 , 11, 5055	17.4	17	
597	Nonreciprocal photonic topological order driven by uniform optical pumping. <i>Physical Review B</i> , 2020 , 102,	3.3	5	
596	. Proceedings of the IEEE, 2020 , 108, 1728-1758	14.3	25	
595	Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias. <i>Science Advances</i> , 2020 , 6, eaba8656	14.3	22	
594	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663	17.4	35	
593	Coherent Perfect Diffraction in Metagratings. Advanced Materials, 2020, 32, e2002341	24	12	
592	Hamiltonian Hopping for Efficient Chiral Mode Switching in Encircling Exceptional Points. <i>Physical Review Letters</i> , 2020 , 125, 187403	7.4	11	
591	Full-visible transmissive metagratings with large angle/wavelength/polarization tolerance. <i>Nanoscale</i> , 2020 , 12, 20604-20609	7.7	10	
590	Wood Anomalies and Surface-Wave Excitation with a Time Grating. <i>Physical Review Letters</i> , 2020 , 125, 127403	7.4	21	
589	Parity-time Symmetry Based on Time Modulation. <i>Physical Review Applied</i> , 2020 , 14,	4.3	11	
588	Acoustic Power Divider Based on Compressibility-Near-Zero Propagation. <i>Physical Review Applied</i> , 2020 , 14,	4.3	2	
587	Harnessing Spectral Singularities in Non- Hermitian Cylindrical Structures. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1704-1716	4.9	7	
586	Metasurface Modeling for the Manipulation of GoosBlachen and ImbertBedorov Shifts. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1523-1532	4.9	2	
585	Nonreciprocal Wavefront Manipulation in Synthetically Moving Metagratings. <i>Photonics</i> , 2020 , 7, 28	2.2	6	

584	Theory and Design of Multifunctional Space-Time Metasurfaces. <i>Physical Review Applied</i> , 2020 , 13,	4.3	33
583	Magnetless Circulators with Harmonic Rejection Based on N-Way Cyclic-Symmetric Time-Varying Networks. <i>Physical Review Applied</i> , 2019 , 12,	4.3	5
582	Coherent virtual absorption of elastodynamic waves. Science Advances, 2019, 5, eaaw3255	14.3	21
581	Radio Frequency Angular Momentum Biased Quasi-LTI Nonreciprocal Acoustic Filters. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2019 , 66, 1814-1825	3.2	13
580	Controlling photonic spin Hall effect via exceptional points. <i>Physical Review B</i> , 2019 , 100,	3.3	31
579	Refractory Brewster metasurfaces control the frequency and angular spectrum of light absorption. <i>Nanomaterials and Nanotechnology</i> , 2019 , 9, 184798041882481	2.9	6
578	Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. <i>Applied Physics Letters</i> , 2019 , 114, 031103	3.4	29
577	Nanophotonic engineering of far-field thermal emitters. <i>Nature Materials</i> , 2019 , 18, 920-930	27	122
576	Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS at Room Temperature. <i>Small</i> , 2019 , 15, e1900982	11	16
575	Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. <i>Communications Physics</i> , 2019 , 2,	5.4	43
574	Passive Acoustic Metasurface with Unitary Reflection Based on Nonlocality. <i>Physical Review Applied</i> , 2019 , 11,	4.3	28
573	Magnet-Free Circulator Based on Spatiotemporal Modulation of Photonic Crystal Defect Cavities. <i>ACS Photonics</i> , 2019 , 6, 2056-2066	6.3	18
572	Nonlinearity-based circulator. <i>Applied Physics Letters</i> , 2019 , 114, 181102	3.4	11
571	Scattering Cancellation-Based Cloaking for the Maxwell-Cattaneo Heat Waves. <i>Physical Review Applied</i> , 2019 , 11,	4.3	25
570	Noninvasive Glucose Sensor Based on Parity-Time Symmetry. <i>Physical Review Applied</i> , 2019 , 11,	4.3	20
569	Angular-momentum selectivity and asymmetry in highly confined wave propagation along sheath-helical metasurface tubes. <i>Physical Review B</i> , 2019 , 99,	3.3	4
568	Theoretical limits for negative elastic moduli in subacoustic lattice materials. <i>Physical Review B</i> , 2019 , 99,	3.3	22
567	Probing the Band Structure of Topological Silicon Photonic Lattices in the Visible Spectrum. <i>Physical Review Letters</i> , 2019 , 122, 117401	7.4	56

566	Combined Metagratings for Efficient Broad-Angle Scattering Metasurface. ACS Photonics, 2019, 6, 1010	0-1:0:17	27
565	Machine-learning reprogrammable metasurface imager. <i>Nature Communications</i> , 2019 , 10, 1082	17.4	194
564	All-optical reconfigurable chiral meta-molecules. <i>Materials Today</i> , 2019 , 25, 10-20	21.8	40
563	Willis Metamaterial on a Structured Beam. <i>Physical Review X</i> , 2019 , 9,	9.1	18
562	Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. <i>Nanotechnology</i> , 2019 , 30, 254004	3.4	11
561	The Design of Optical Circuit-Analog Absorbers through Electrically Small Nanoparticles. <i>Photonics</i> , 2019 , 6, 26	2.2	9
560	Enhancing functionalities of atomically thin semiconductors with plasmonic nanostructures. <i>Nanophotonics</i> , 2019 , 8, 577-598	6.3	17
559	Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. <i>Nature Photonics</i> , 2019 , 13, 180-184	33.9	86
558	Nonreciprocal acoustic propagation and leaky-wave radiation in a waveguide with flow. <i>Journal of the Acoustical Society of America</i> , 2019 , 146, 802	2.2	13
557	Nonreciprocal Willis Coupling in Zero-Index Moving Media. <i>Physical Review Letters</i> , 2019 , 123, 064301	7.4	26
556	CMOS Integrated Magnetless Circulators Based on Spatiotemporal Modulation Angular-Momentum Biasing. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2019 , 67, 2649-266	52 ^{4.1}	28
555	Topological nanophotonics. <i>Nanophotonics</i> , 2019 , 8, 1315-1317	6.3	7
554	Topological phases and nonreciprocal edge states in non-Hermitian Floquet insulators. <i>Physical Review B</i> , 2019 , 100,	3.3	28
553	Dark Excitons: Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS2 at Room Temperature (Small 31/2019). <i>Small</i> , 2019 , 15, 1970164	11	
552	Quasielectrostatic Wave Propagation Beyond the Delay-Bandwidth Limit in Switched Networks. <i>Physical Review X</i> , 2019 , 9,	9.1	10
551	Acoustic meta-atom with experimentally verified maximum Willis coupling. <i>Nature Communications</i> , 2019 , 10, 3148	17.4	34
550	Nonscattering-to-Superscattering Switch with Phase-Change Materials. ACS Photonics, 2019, 6, 2126-21	1 32 3	20
549	Optomechanically Induced Birefringence and Optomechanically Induced Faraday Effect. <i>Physical Review Letters</i> , 2019 , 123, 023602	7.4	8

548	Broadband delay lines and nonreciprocal resonances in unidirectional waveguides. <i>Physical Review B</i> , 2019 , 100,	3.3	7
547	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002	1.7	69
546	Beyond Chuld Limit with Floquet Impedance Matching. Physical Review Letters, 2019, 123, 164102	7.4	23
545	Can a Nonradiating Mode Be Externally Excited? Nonscattering States versus Embedded Eigenstates. <i>ACS Photonics</i> , 2019 , 6, 3108-3114	6.3	39
544	Temporally and Spatially Coherent Emission from Thermal Embedded Eigenstates. <i>ACS Photonics</i> , 2019 , 6, 2949-2956	6.3	12
543	High-Index Dielectric Metasurfaces Performing Mathematical Operations. <i>Nano Letters</i> , 2019 , 19, 8418-	-8 4 123	71
542	Spoof-Fluid-Spoof Acoustic Waveguide and its Applications for Sound Manipulation. <i>Physical Review Applied</i> , 2019 , 12,	4.3	3
541	Anti-parity-time symmetry in diffusive systems. <i>Science</i> , 2019 , 364, 170-173	33.3	116
540	Acoustic Supercoupling in a Zero-Compressibility Waveguide. <i>Research</i> , 2019 , 2019, 1-10	7.8	1
539	Anomalies in light scattering. Advances in Optics and Photonics, 2019 , 11, 892	16.7	76
539 538	Anomalies in light scattering. <i>Advances in Optics and Photonics</i> , 2019 , 11, 892 Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948	Í	
		Í	
538	Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948	1 ₃ 9 ₃ 494	7
538 537	Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948 Anomalous optical forces in PT-symmetric waveguides. <i>Optics Letters</i> , 2019 , 44, 3558-3561	1 ₃ 9 ₄ 194 3 8.6	10
538 537 536	Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948 Anomalous optical forces in PT-symmetric waveguides. <i>Optics Letters</i> , 2019 , 44, 3558-3561 Nonreciprocal cavities and the timeBandwidth limit. <i>Optica</i> , 2019 , 6, 104	1 ₃ 9 ₄ 194 3 8.6	10
538 537 536 535	Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948 Anomalous optical forces in PT-symmetric waveguides. <i>Optics Letters</i> , 2019 , 44, 3558-3561 Nonreciprocal cavities and the timeBandwidth limit. <i>Optica</i> , 2019 , 6, 104 Excitation of single-photon embedded eigenstates in coupled cavityBtom systems. <i>Optica</i> , 2019 , 6, 799	1 ₃ 9 ₃ 494 3 8.6 8.6	7 10 30 15
538 537 536 535 534	Enhancing THz generation in photomixers using a metamaterial approach. <i>Optics Express</i> , 2019 , 27, 948 Anomalous optical forces in PT-symmetric waveguides. <i>Optics Letters</i> , 2019 , 44, 3558-3561 Nonreciprocal cavities and the timeBandwidth limit. <i>Optica</i> , 2019 , 6, 104 Excitation of single-photon embedded eigenstates in coupled cavityBtom systems. <i>Optica</i> , 2019 , 6, 799 Optically driven effective Faraday effect in instantaneous nonlinear media. <i>Optica</i> , 2019 , 6, 1152	3 8.6 8.6	7 10 30 15

(2018-2019)

530	On the Topological Robustness of Vortex Modes at Microwave Frequencies. <i>Radioengineering</i> , 2019 , 27, 499-504	0.8	3
529	. IEEE Transactions on Microwave Theory and Techniques, 2019 , 67, 4773-4782	4.1	10
528	Self-organized spatially separated silver 3D dendrites as efficient plasmonic nanostructures for surface-enhanced Raman spectroscopy applications. <i>Journal of Applied Physics</i> , 2019 , 126, 233105	2.5	20
527	Nonlinear topological transitions over a metasurface. <i>Physical Review B</i> , 2019 , 100,	3.3	2
526	Enhanced Sensing and Nondegraded Thermal Noise Performance Based on PT-Symmetric Electronic Circuits with a Sixth-Order Exceptional Point. <i>Physical Review Letters</i> , 2019 , 123, 213901	7·4	44
525	Homogenization of All-Dielectric Metasurfaces: Theory and Applications 2019,		1
524	Hyperbolic Sound Propagation over Nonlocal Acoustic Metasurfaces. <i>Physical Review Letters</i> , 2019 , 123, 244303	7.4	21
523	. Journal of Microelectromechanical Systems, 2019 , 28, 933-940	2.5	7
522	Topological Robustness of Phase Singularities at Microwave Frequencies 2019,		1
521	Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. <i>Nano Letters</i> , 2019 , 19, 1009-10	1411.5	42
521 520	Hyperbolic Phonon Polaritons in Suspended Hexagonal Boron Nitride. <i>Nano Letters</i> , 2019 , 19, 1009-10 Observation of higher-order topological acoustic states protected by generalized chiral symmetry. <i>Nature Materials</i> , 2019 , 18, 113-120	14 ₁ 1.5	42 264
	Observation of higher-order topological acoustic states protected by generalized chiral symmetry.		
520	Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nature Materials, 2019, 18, 113-120	27	264
520 519	Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nature Materials, 2019, 18, 113-120 Exceptional points in optics and photonics. Science, 2019, 363, Ultra-Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy.	27 33·3	26450353
520 519 518	Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nature Materials, 2019, 18, 113-120 Exceptional points in optics and photonics. Science, 2019, 363, Ultra-Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy. Advanced Optical Materials, 2019, 7, 1801236 Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and	27 33.3 8.1	26450353
520 519 518	Observation of higher-order topological acoustic states protected by generalized chiral symmetry. <i>Nature Materials</i> , 2019 , 18, 113-120 Exceptional points in optics and photonics. <i>Science</i> , 2019 , 363, Ultra-Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy. <i>Advanced Optical Materials</i> , 2019 , 7, 1801236 Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. <i>National Science Review</i> , 2019 , 6, 231-238	27 33.3 8.1 10.8	26450353172
520 519 518 517 516	Observation of higher-order topological acoustic states protected by generalized chiral symmetry. <i>Nature Materials</i> , 2019 , 18, 113-120 Exceptional points in optics and photonics. <i>Science</i> , 2019 , 363, Ultra-Narrowband Metamaterial Absorbers for High Spectral Resolution Infrared Spectroscopy. <i>Advanced Optical Materials</i> , 2019 , 7, 1801236 Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. <i>National Science Review</i> , 2019 , 6, 231-238 Nonreciprocal hyperbolic propagation over moving metasurfaces. <i>Physical Review B</i> , 2019 , 99,	27 33.3 8.1 10.8	264 503 53 172 10

512	Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS at Room Temperature. <i>Advanced Materials</i> , 2018 , 30, e1705779	24	56
511	Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS Structures. <i>ACS Applied Materials & Acs Applied &</i>	9.5	54
510	Non-reciprocal optical mirrors based on spatio-temporal acousto-optic modulation. <i>Journal of Optics (United Kingdom)</i> , 2018 , 20, 034007	1.7	10
509	Achieving Full-Duplex Communication: Magnetless Parametric Circulators for Full-Duplex Communication Systems. <i>IEEE Microwave Magazine</i> , 2018 , 19, 84-90	1.2	21
508	All-Optical Switching and Unidirectional Plasmon Launching with Nonlinear Dielectric Nanoantennas. <i>Physical Review Applied</i> , 2018 , 9,	4.3	24
507	Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances. <i>Physical Review B</i> , 2018 , 97,	3.3	28
506	Broadband passive isolators based on coupled nonlinear resonances. <i>Nature Electronics</i> , 2018 , 1, 113-17	1 9 8.4	98
505	Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures. <i>Advanced Optical Materials</i> , 2018 , 6, 1701094	8.1	97
504	Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems. <i>Physical Review A</i> , 2018 , 97,	2.6	41
503	Embedded scattering eigenstates using resonant metasurfaces. <i>Journal of Optics (United Kingdom)</i> , 2018 , 20, 064002	1.7	25
502	. IEEE Transactions on Antennas and Propagation, 2018 , 66, 3512-3525	4.9	38
501	. IEEE Transactions on Microwave Theory and Techniques, 2018 , 66, 911-926	4.1	61
500	Trapping Light in Plain Sight: Embedded Photonic Eigenstates in Zero-Index Metamaterials. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1700220	8.3	46
499	Enhanced Photoresponse in Metasurface-Integrated Organic Photodetectors. <i>Nano Letters</i> , 2018 , 18, 3362-3367	11.5	22
498	Boosting Terahertz Photoconductive Antenna Performance with Optimised Plasmonic Nanostructures. <i>Scientific Reports</i> , 2018 , 8, 6624	4.9	46
497	Coherently Enhanced Wireless Power Transfer. <i>Physical Review Letters</i> , 2018 , 120, 143901	7.4	22
496	Spectrum Control through Discrete Frequency Diffraction in the Presence of Photonic Gauge Potentials. <i>Physical Review Letters</i> , 2018 , 120, 133901	7.4	56
495	Fundamental bounds on the operation of Fano nonlinear isolators. <i>Physical Review B</i> , 2018 , 97,	3.3	39

494	Metasurface-based anti-reflection coatings at optical frequencies. <i>Journal of Optics (United Kingdom)</i> , 2018 , 20, 055001	1.7	7
493	Manipulation and Steering of Hyperbolic Surface Polaritons in Hexagonal Boron Nitride. <i>Advanced Materials</i> , 2018 , 30, e1706358	24	45
492	Reconfigurable Metagratings. ACS Photonics, 2018, 5, 1779-1785	6.3	50
491	Broadband absorption with gradient metasurfaces. EPJ Applied Metamaterials, 2018, 5, 4	0.8	2
490	Nonlinear metasurfaces: a paradigm shift in nonlinear optics. <i>Materials Today</i> , 2018 , 21, 8-21	21.8	241
489	Nanophotonics with 2D transition metal dichalcogenides [Invited]. Optics Express, 2018, 26, 15972-1599	14 .3	91
488	Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. <i>Optics Letters</i> , 2018 , 43, 1838-1841	3	50
487	Parity-Time Symmetry in Optics 2018 , 291-301		О
486	Optomechanical frequency combs. New Journal of Physics, 2018, 20, 043013	2.9	12
485	Internal Nanostructure Diagnosis with Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride. <i>Nano Letters</i> , 2018 , 18, 5205-5210	11.5	21
484	On-Site Wireless Power Generation. <i>IEEE Transactions on Antennas and Propagation</i> , 2018 , 66, 4260-426	8 4.9	17
483	Pseudo-Linear Time-Invariant Magnetless Circulators Based on Differential Spatiotemporal Modulation of Resonant Junctions. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 2731-2745	4.1	45
482	Optical circulation in a multimode optomechanical resonator. <i>Nature Communications</i> , 2018 , 9, 1798	17.4	57
481	Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators. <i>Science Advances</i> , 2018 , 4, eaap8802	14.3	59
480	Optical gradient forces between evanescently coupled waveguides. <i>Optics Letters</i> , 2018 , 43, 4104-4107	3	6
479	Nonreciprocity Based on Nonlinear Resonances. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 1958-1962	3.8	16
478	Fully-Integrated Non-Magnetic 180nm SOI Circulator with > 1W P1dB, >+50dBm IIP3 and High Isolation Across 1.85 VSWR 2018 ,		11
477	Magnetic-free radio frequency circulator based on spatiotemporal commutation of MEMS resonators 2018 ,		29

476	Experimental observation of a polarization vortex at an optical bound state in the continuum. <i>Nature Photonics</i> , 2018 , 12, 397-401	33.9	171
475	Artificial nonreciprocal photonic materials at GHz-to-THz frequencies. MRS Bulletin, 2018, 43, 436-442	3.2	4
474	Maximum Willis Coupling in Acoustic Scatterers. <i>Physical Review Letters</i> , 2018 , 120, 254301	7.4	73
473	Structural coloration with hourglass-shaped vertical silicon nanopillar arrays. <i>Optics Express</i> , 2018 , 26, 30952-30968	3.3	12
472	Aharonov B ohm-inspired tomographic imaging via compressive sensing. <i>IET Microwaves, Antennas and Propagation</i> , 2018 , 12, 1890-1894	1.6	1
471	Strong Coupling in Si Nanoparticle Core - 2D WS2 Shell Structure. <i>Journal of Physics: Conference Series</i> , 2018 , 1092, 012077	0.3	
470	Low-Profile Transmitarray Antenna With Single Slot Source and Metasurface in 80-GHz Band 2018,		4
469	A Quasi-LTI Frequency-Selective SAW Circulator 2018,		7
468	Electromagnetic Cloaking for Antenna Arrays 2018,		1
467	Broadband Cyclic-Symmetric Magnetless Circulators and Theoretical Bounds on Their Bandwidth. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 66, 5472-5481	4.1	24
466	Guest Editorial Special Cluster on Magnetless Nonreciprocity in Electromagnetics. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 1931-1937	3.8	8
465	Active Microwave Cloaking Using Parity-Time-Symmetric Satellites. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
464	Metasurface-based Doppler cloaks: Time-varying metasurface profile to achieve perfect frequency mixing 2018 ,		3
463	Perspectives on frontiers in electronic and photonic materials. MRS Bulletin, 2018, 43, 901-908	3.2	
462	Parity-Time Symmetry in Scattering Problems. Springer Tracts in Modern Physics, 2018, 53-74	0.1	1
461	Boundary Effects of Weak Nonlocality in Multilayered Dielectric Metamaterials. <i>Physical Review Applied</i> , 2018 , 10,	4.3	9
460	Electromagnetic Nonreciprocity. <i>Physical Review Applied</i> , 2018 , 10,	4.3	198
459	EXPLOITING THE TOPOLOGICAL ROBUSTNESS OF COMPOSITE VORTICES IN RADIATION SYSTEMS. <i>Progress in Electromagnetics Research</i> , 2018 , 162, 39-50	3.8	18

458	Nonreciprocal Components Based on Switched Transmission Lines. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2018 , 1-20	4.1	8
457	Nonlocal Metasurfaces for Optical Signal Processing. <i>Physical Review Letters</i> , 2018 , 121, 173004	7.4	136
456	Magnetic-free nonreciprocal photonic platform based on time-modulated graphene capacitors. <i>Physical Review B</i> , 2018 , 98,	3.3	30
455	Full-space Cloud of Random Points with a Scrambling Metasurface. <i>Light: Science and Applications</i> , 2018 , 7, 63	16.7	76
454	Valley-Selective Response of Nanostructures Coupled to 2D Transition-Metal Dichalcogenides. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1157	2.6	18
453	Nonreciprocity in Antenna Radiation Induced by Space-Time Varying Metamaterial Cloaks. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2018 , 17, 1968-1972	3.8	34
452	. IEEE Antennas and Wireless Propagation Letters, 2018 , 17, 1963-1967	3.8	9
451	Low-Loss Broadband Magnetless Circulators for Full-Duplex Radios 2018,		10
450	Tunable Orbital Angular Momentum Radiation from Angular-Momentum-Biased Microcavities. <i>Physical Review Letters</i> , 2018 , 121, 103901	7.4	14
449	Localized All-Optical Control of Single Semiconductor Quantum Dots through Plasmon Polariton-Induced Screening. <i>Advanced Optical Materials</i> , 2018 , 6, 1800345	8.1	
448	Generalized parityEime symmetry condition for enhanced sensor telemetry. <i>Nature Electronics</i> , 2018 , 1, 297-304	28.4	103
447	Fano Resonances: Tunable Fano Resonance and Plasmon E xciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). <i>Advanced Materials</i> , 2018 , 30, 1870155	24	
446	Metasurfaces Ifrom science to applications. <i>Nanophotonics</i> , 2018 , 7, 949-951	6.3	2
445	Visible Light, Wide-Angle Graded Metasurface for Back Reflection. <i>ACS Photonics</i> , 2017 , 4, 228-235	6.3	54
444	A Reconfigurable Active Huygens Metalens. <i>Advanced Materials</i> , 2017 , 29, 1606422	24	301
444	A Reconfigurable Active Huygens Metalens. <i>Advanced Materials</i> , 2017 , 29, 1606422 Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces. <i>Physical Review B</i> , 2017 , 95,	24 3·3	301
	Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces. <i>Physical Review B</i> ,	,	

440	Static non-reciprocity in mechanical metamaterials. <i>Nature</i> , 2017 , 542, 461-464	50.4	154
439	Modifying magnetic dipole spontaneous emission with nanophotonic structures. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600268	8.3	73
438	Modifying magnetic dipole spontaneous emission with nanophotonic structures (Laser Photonics Rev. 11(3)/2017). <i>Laser and Photonics Reviews</i> , 2017 , 11, 1770031	8.3	3
437	Topological edge states in acoustic Kagome lattices. <i>New Journal of Physics</i> , 2017 , 19, 055002	2.9	38
436	Systematic study of the hybrid plasmonic-photonic band structure underlying lasing action of diffractive plasmon particle lattices. <i>Physical Review B</i> , 2017 , 95,	3.3	20
435	Optical Antennas: Controlling Electromagnetic Scattering, Radiation, and Emission at the Nanoscale. <i>IEEE Antennas and Propagation Magazine</i> , 2017 , 59, 43-61	1.7	12
434	Coherent perfect absorbers: linear control of light with light. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	163
433	Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. <i>Nature Communications</i> , 2017 , 8, 795	17.4	69
432	Differential magnetless circulator using modulated bandstop filters 2017,		17
431	Efficient anomalous reflection through near-field interactions in metasurfaces. <i>Physical Review B</i> , 2017 , 96,	3.3	51
430	Plasmon canalization and tunneling over anisotropic metasurfaces. <i>Physical Review B</i> , 2017 , 96,	3.3	37
429	Designer matter: Fascinating interactions of light and sound with metamaterials. <i>MRS Bulletin</i> , 2017 , 42, 677-682	3.2	
428	Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. <i>Physical Review B</i> , 2017 , 96,	3.3	65
427	Metagratings: Beyond the Limits of Graded Metasurfaces for Wave Front Control. <i>Physical Review Letters</i> , 2017 , 119, 067404	7.4	223
426	Highly-efficient THz generation using nonlinear plasmonic metasurfaces. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 104001	1.7	18
425	Tunable plasmonic substrates with ultrahigh Q-factor resonances. <i>Scientific Reports</i> , 2017 , 7, 15985	4.9	31
424	Non-reciprocal photonics based on time modulation. <i>Nature Photonics</i> , 2017 , 11, 774-783	33.9	348
423	Scattering at the Extreme with Metamaterials and Plasmonics. <i>World Scientific Series in Nanoscience and Nanotechnology</i> , 2017 , 295-335	0.1	3

422	Molding Sound Propagation and Scattering with Acoustic Metamaterials and Metasurfaces. <i>World Scientific Series in Nanoscience and Nanotechnology</i> , 2017 , 427-459	0.1		
421	Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. <i>New Journal of Physics</i> , 2017 , 19, 093011	2.9	37	
420	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008	1.7	5	
419	Optical Nonreciprocity Based on Optomechanical Coupling. <i>Physical Review Applied</i> , 2017 , 7,	4.3	58	
418	Dynamically reconfigurable metal-semiconductor Yagi-Uda nanoantenna. <i>Physical Review B</i> , 2017 , 95,	3.3	16	
417	Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton. <i>Nature Communications</i> , 2017 , 8, 35	17.4	22	
416	Surface-admittance equivalence principle for nonradiating and cloaking problems. <i>Physical Review A</i> , 2017 , 95,	2.6	12	
415	Doppler cloak restores invisibility to objects in relativistic motion. <i>Physical Review B</i> , 2017 , 95,	3.3	43	
414	Solitons and Propagating Domain Walls in Topological Resonator Arrays. ACS Photonics, 2017, 4, 1974-	197.9	29	
413	Optomechanically induced spontaneous symmetry breaking. <i>Physical Review A</i> , 2017 , 95,	2.6	8	
412	Time-Reversal Symmetry Bounds on the Electromagnetic Response of Asymmetric Structures. <i>Physical Review Letters</i> , 2017 , 118, 154302	7.4	40	
411	Experimental Demonstration of Metasurface-Based Ultrathin Carpet Cloaks for Millimeter Waves. <i>Advanced Optical Materials</i> , 2017 , 5, 1600606	8.1	61	
410	Spatio-temporal modulated Doppler cloak for antenna matching at relativistic velocity 2017,		4	
409	Ultra narrowband infrared absorbers for omni-directional and polarization insensitive multi-spectral sensing microsystems 2017 ,		2	
408	Scattering properties of parity-time symmetric nanoparticle dimers 2017,		1	
407	Composite Floquet scattering matrix for the analysis of time-modulated systems 2017,		3	
406	Coherent virtual absorption based on complex zero excitation for ideal light capturing. <i>Optica</i> , 2017 , 4, 1457	8.6	44	
4 ⁰ 5	Coupled cavity optomechanical meta-waveguides [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2017 , 34, D68	1.7	2	

404	Narrowband transparent absorbers based on ellipsoidal nanoparticles. <i>Applied Optics</i> , 2017 , 56, 7533-7	′5 3 .8⁄	12
403	Topological edge states of distorted photonic Kagome lattices 2017 ,		1
402	Nonlinear core-shell Yagi-Uda nanoantenna for highly tunable directive emission 2017,		1
401	Scattering Cancellation and Plasmonic Cloaking 2017 , 7-1-7-19		
400	Guessing the texture of magnetic samples assisted by Aharonov-Bohm effect 2016,		1
399	Cloaking through cancellation of diffusive wave scattering. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2016 , 472, 20160276	2.4	12
398	Metamaterials: Prime time. Nature Materials, 2016 , 15, 1229-1231	27	11
397	Circuit-based magnetless floquet topological insulator 2016 ,		3
396	Giant Photoresponsivity of Midinfrared Hyperbolic Metamaterials in the Photon-Assisted-Tunneling Regime. <i>Physical Review Applied</i> , 2016 , 5,	4.3	14
395	Generalized antireflection coatings for complex bulk metamaterials. <i>Physical Review B</i> , 2016 , 93,	3.3	4
394	Parity-time-symmetric teleportation. <i>Physical Review B</i> , 2016 , 93,	3.3	23
393	Tunable scattering cancellation cloak with plasmonic ellipsoids in the visible. <i>Physical Review B</i> , 2016 , 93,	3.3	22
392	Self-induced topological transitions and edge states supported by nonlinear staggered potentials. <i>Physical Review B</i> , 2016 , 93,	3.3	91
391	DrexhageN Experiment for Sound. <i>Physical Review Letters</i> , 2016 , 116, 224301	7.4	10
390	Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. <i>Nature Communications</i> , 2016 , 7, 11249	17.4	99
389	Metasurfaces with engineered reflection and transmission: Optimal designs through coupled-mode analysis 2016 ,		1
388	Enhancing metasurfaces and metamaterials with time-modulation and nonlinear responses 2016,		1
387	Flatland Optics with Hyperbolic Metasurfaces. ACS Photonics, 2016, 3, 2211-2224	6.3	100

(2016-2016)

386	Tuning of near- and far-field properties of all-dielectric dimer nanoantennas via ultrafast electron-hole plasma photoexcitation. <i>Laser and Photonics Reviews</i> , 2016 , 10, 1009-1015	8.3	44
385	Floquet topological insulators for sound. <i>Nature Communications</i> , 2016 , 7, 11744	17.4	327
384	Magnetically-biased graphene-based hyperbolic metasurfaces 2016,		1
383	Parity-Time Symmetric Nonlocal Metasurfaces: All-Angle Negative Refraction and Volumetric Imaging. <i>Physical Review X</i> , 2016 , 6,	9.1	49
382	Controlling sound with acoustic metamaterials. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	867
381	Wave-front Transformation with Gradient Metasurfaces. <i>Physical Review X</i> , 2016 , 6,	9.1	112
380	Design of cloaked Yagi-Uda antennas. <i>EPJ Applied Metamaterials</i> , 2016 , 3, 10	0.8	16
379	Nonlinearity-induced PT-symmetry without material gain. New Journal of Physics, 2016, 18, 065001	2.9	20
378	Ultrathin Second-Harmonic Metasurfaces with Record-High Nonlinear Optical Response. <i>Advanced Optical Materials</i> , 2016 , 4, 664-670	8.1	56
377	Magnetless Microwave Circulators Based on Spatiotemporally Modulated Rings of Coupled Resonators. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2016 , 1-17	4.1	96
376	Breaking temporal symmetries for emission and absorption. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3471-5	11.5	139
375	Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2016 , 15, 1529-1532	3.8	71
374	Electromagnetic metasurfaces: introduction. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, EM1	1.7	4
373	Ultrathin gradient nonlinear metasurface with a giant nonlinear response. <i>Optica</i> , 2016 , 3, 283	8.6	67
372	Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. <i>Science Advances</i> , 2016 , 2, e1501168	14.3	218
371	Recent progress in gradient metasurfaces. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, A21	1.7	138
370	Dispersion engineering via nonlocal transformation optics. <i>Optica</i> , 2016 , 3, 179	8.6	21
369	Magnetless circulators for electromagnetic and acoustic waves 2016 ,		1

368	Invisibility exposed: physical bounds on passive cloaking. <i>Optica</i> , 2016 , 3, 718	8.6	50
367	Chapter 6 Metasurfaces for Extreme Light Manipulation andWave Control 2016 , 191-242		1
366	Nonreciprocity and magnetic-free isolation based on optomechanical interactions. <i>Nature Communications</i> , 2016 , 7, 13662	17.4	188
365	Advancements in Doppler cloak technology: Manipulation of Doppler Effect and invisibility for moving objects 2016 ,		3
364	Flat nonlinear optics with ultrathin highly-nonlinear metasurfaces 2016,		1
363	Reciprocity, passivity and causality in Willis materials. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2016 , 472, 20160604	2.4	36
362	Advanced control of nonlinear beams with Pancharatnam-Berry metasurfaces. <i>Physical Review B</i> , 2016 , 94,	3.3	21
361	Mantle cloaking for co-site radio-frequency antennas. <i>Applied Physics Letters</i> , 2016 , 108, 113502	3.4	63
360	Scattering properties of PT-symmetric objects. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 075104	1.7	18
359	Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials. <i>Nano Letters</i> , 2016 , 16, 3936-43	11.5	75
358	Color Separation through Spectrally-Selective Optical Funneling. ACS Photonics, 2016, 3, 620-626	6.3	6
357	. IEEE Transactions on Antennas and Propagation, 2016 , 64, 2301-2310	4.9	20
356	Parity-Time Symmetry in Acoustics: Theory, Devices, and Potential Applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22, 121-129	3.8	28
355	PT-symmetric planar devices for field transformation and imaging. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 044028	1.7	12
354	Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit. <i>ACS Nano</i> , 2016 , 10, 8620-31	16.7	37
353	Gate-Programmable Electro-Optical Addressing Array of Graphene-Coated Nanowires with Sub-10 nm Resolution. <i>ACS Photonics</i> , 2016 , 3, 1847-1853	6.3	19
352	Focused thermal emission from a nanostructured SiC surface. <i>Physical Review B</i> , 2016 , 94,	3.3	29
351	Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 104006	1.7	71

(2015-2016)

350	Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. <i>ACS Nano</i> , 2016 , 10, 9326-9333	16.7	43
349	Roadmap on optical metamaterials. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 093005	1.7	89
348	Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. <i>Journal of Applied Physics</i> , 2015 , 117, 023118	2.5	26
347	Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces. <i>Physical Review Letters</i> , 2015 , 114, 233901	7.4	193
346	Graded metascreens to enable a new degree of nanoscale light management. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2015 , 373,	3	24
345	Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. <i>Nano Letters</i> , 2015 , 15, 5254-60	11.5	56
344	Enhanced Second-Harmonic Generation by Metasurface Nanomixer and Nanocavity. <i>ACS Photonics</i> , 2015 , 2, 1000-1006	6.3	39
343	Optical invisibility through metasurfaces made of plasmonic nanoparticles. <i>Journal of Applied Physics</i> , 2015 , 117, 123103	2.5	30
342	Multiband and Wideband Bilayer Mantle Cloaks. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 3235-3240	4.9	44
341	Nanophotonics: shrinking light-based technology. <i>Science</i> , 2015 , 348, 516-21	33.3	356
340	Thermal invisibility based on scattering cancellation and mantle cloaking. Scientific Reports, 2015, 5, 987	'6 4.9	53
339	PT-symmetry-induced wave confinement and guiding in thear-zero metamaterials. <i>Physical Review B</i> , 2015 , 91,	3.3	48
338	Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb(3+)/Er(3+) Nanocrystals. <i>Scientific Reports</i> , 2015 , 5, 10196	4.9	34
337	Interplay of Magnetic Responses in All-Dielectric Oligomers To Realize Magnetic Fano Resonances. <i>ACS Photonics</i> , 2015 , 2, 724-729	6.3	82
336	Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides: Analysis and Applications as Reconfigurable Antennas. <i>IEEE Transactions on Terahertz Science and Technology</i> , 2015 , 5, 951-960	3.4	69
335	Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]. <i>Optical Materials Express</i> , 2015 , 5, 2313	2.6	85
334	. IEEE Transactions on Antennas and Propagation, 2015 , 63, 4827-4834	4.9	56
333	Nonreciprocal Horn Antennas Using Angular Momentum-Biased Metamaterial Inclusions. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 5593-5600	4.9	35

332	Longitudinally Independent Matching and Arbitrary Wave Patterning Using \$varepsilon\$ -Near-Zero Channels. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2015 , 63, 3558-3567	4.1	14
331	Nonlinear nanocircuitry based on quantum tunneling effects. MRS Communications, 2015, 5, 565-571	2.7	4
330	Dynamic Homogenization of Acoustic Metamaterials with Coupled Field Response. <i>Physics Procedia</i> , 2015 , 70, 275-278		8
329	Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain. <i>Physical Review Applied</i> , 2015 , 4,	4.3	124
328	Invisibility and Cloaking: Origins, Present, and Future Perspectives. <i>Physical Review Applied</i> , 2015 , 4,	4.3	92
327	Subwavelength ultrasonic circulator based on spatiotemporal modulation. <i>Physical Review B</i> , 2015 , 91,	3.3	84
326	Terahertz carpet cloak based on a ring resonator metasurface. <i>Physical Review B</i> , 2015 , 91,	3.3	86
325	Space-time gradient metasurfaces. <i>Physical Review B</i> , 2015 , 92,	3.3	205
324	Nonlinear processes in multi-quantum-well plasmonic metasurfaces: Electromagnetic response, saturation effects, limits, and potentials. <i>Physical Review B</i> , 2015 , 92,	3.3	34
323	Aharonov-Bohm detection of two-dimensional magnetostatic cloaks. <i>Physical Review B</i> , 2015 , 92,	3.3	3
322	Gradient Nonlinear Pancharatnam-Berry Metasurfaces. <i>Physical Review Letters</i> , 2015 , 115, 207403	7.4	132
321	Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. <i>Nature Communications</i> , 2015 , 6, 8260	17.4	344
320	Acoustic scattering cancellation of irregular objects surrounded by spherical layers in the resonant regime. <i>Journal of Applied Physics</i> , 2015 , 118, 164903	2.5	5
319	ELECTRIC QUADRUPOLARIZABILITY OF A SOURCE-DRIVEN DIELECTRIC SPHERE. <i>Progress in Electromagnetics Research B</i> , 2015 , 63, 95-106	0.7	3
318	SIMULATING WAVE PHENOMENA IN LARGE GRADED-PATTERN ARRAYS WITH RANDOM PERTURBATION. <i>Progress in Electromagnetics Research</i> , 2015 , 154, 127-141	3.8	1
317	Experimental Demonstration of Negative-Index Propagation in a Rectangular Waveguide Loaded With Complementary Split-Ring Resonators. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2015 , 14, 119-122	3.8	9
316	Nonlinear optics with quantum-engineered intersubband metamaterials 2015,		1
315	Leaky-Wave Theory, Techniques, and Applications: From Microwaves to Visible Frequencies. <i>Proceedings of the IEEE</i> , 2015 , 103, 793-821	14.3	132

(2014-2015)

314	Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review. <i>Photonics</i> , 2015 , 2, 540-552	2.2	19
313	The Role of Reactive Energy in the Radiation by a Dipole Antenna. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 3736-3741	4.9	10
312	Radio-frequency transparent dipole antennas 2015 ,		1
311	On-chip non-reciprocal components based on angular-momentum biasing 2015 ,		9
310	Breaking temporal symmetries in acoustic metamaterials 2015,		1
309	Leaky waves, woodN anomalies and extraordinary optical trapping 2015,		1
308	PT-symmetric metamaterial systems for aberration-free imaging and wave manipulation 2015,		1
307	Graphene plasmonics: Theory and experiments 2015,		1
306	Giant nonlinear processes in plasmonic metasurfaces 2015,		1
305	Reciprocal and non-reciprocal signal manipulation through horn antennas loaded with metamaterial-inspired particles 2015 ,		2
304	Nonlocal response of hyperbolic metasurfaces. <i>Optics Express</i> , 2015 , 23, 29434-48	3.3	38
304	Nonlocal response of hyperbolic metasurfaces. <i>Optics Express</i> , 2015 , 23, 29434-48 An invisible acoustic sensor based on parity-time symmetry. <i>Nature Communications</i> , 2015 , 6, 5905	3.3	38 385
		3·3 17·4	
303	An invisible acoustic sensor based on parity-time symmetry. <i>Nature Communications</i> , 2015 , 6, 5905 Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced</i>	17.4	385
303	An invisible acoustic sensor based on parity-time symmetry. <i>Nature Communications</i> , 2015 , 6, 5905 Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200	17.4 24	385 341
303 302 301	An invisible acoustic sensor based on parity-time symmetry. <i>Nature Communications</i> , 2015 , 6, 5905 Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200 Dynamic polarizability tensor for circular cylinders. <i>Physical Review B</i> , 2015 , 91, Anisotropic Mantle Cloaks for TM and TE Scattering Reduction. <i>IEEE Transactions on Antennas and</i>	17.4 24 3.3	385 341 7
303 302 301 300	An invisible acoustic sensor based on parity-time symmetry. <i>Nature Communications</i> , 2015 , 6, 5905 Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. <i>Advanced Materials</i> , 2015 , 27, 1195-200 Dynamic polarizability tensor for circular cylinders. <i>Physical Review B</i> , 2015 , 91, Anisotropic Mantle Cloaks for TM and TE Scattering Reduction. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 1775-1788 Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers. <i>Physical</i>	17.4 24 3.3 4.9	385 341 7 69

296	Enhanced Faraday rotation via resonant tunnelling in tri-layers containing magneto-optical metals. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 025002	3	12
295	Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. <i>Science</i> , 2014 , 343, 516-	-9 ;3.3	597
294	Performing mathematical operations with metamaterials. <i>Science</i> , 2014 , 343, 160-3	33.3	504
293	Design of multi-layer mantle cloaks 2014 ,		10
292	Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. <i>Nature Physics</i> , 2014 , 10, 923-927	16.2	360
291	Cloaking of an acoustic sensor using scattering cancellation. <i>Applied Physics Letters</i> , 2014 , 105, 023510	3.4	27
290	Mantle cloaking and related applications in antennas 2014,		2
289	Magnetic-free, fully integrated, compact microwave circulator using angular-momentum biasing 2014 ,		2
288	Wideband tunable and non-foster mantle cloaks 2014 ,		4
287	Ultrafast Electrically Tunable Polaritonic Metasurfaces. <i>Advanced Optical Materials</i> , 2014 , 2, 1057-1063	8.1	64
286	Scattering suppression and wideband tunability of a flexible mantle cloak for finite-length conducting rods. <i>New Journal of Physics</i> , 2014 , 16, 063063	2.9	30
285	Frustrated total internal reflection and critical coupling in a thick plasmonic grating with narrow slits. <i>Applied Physics Letters</i> , 2014 , 104, 221113	3.4	2
284	The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9059-9072	7.1	82
283	Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. <i>Advanced Materials</i> , 2014 , 26, 6106-10	24	101
282	Controlling Scattering and Absorption With Metamaterial Covers. <i>IEEE Transactions on Antennas and Propagation</i> , 2014 , 62, 4220-4229	4.9	56
281	Minimum-scattering superabsorbers. <i>Physical Review B</i> , 2014 , 89,	3.3	26
280	Manipulation of electron flow using near-zero index semiconductor metamaterials. <i>Physical Review B</i> , 2014 , 90,	3.3	22
279	Wave propagation in twisted metamaterials. <i>Physical Review B</i> , 2014 , 90,	3.3	26

278	Frozen light in a near-zero index metasurface. <i>Physical Review B</i> , 2014 , 90,	3.3	16
277	Fano-induced solar absorption enhancement in thin organic photovoltaic cells. <i>Applied Physics Letters</i> , 2014 , 105, 141118	3.4	15
276	Manipulating optical reflections using engineered nanoscale metasurfaces. <i>Physical Review B</i> , 2014 , 89,	3.3	35
275	Graphene-Based Plasmonic Platform for Reconfigurable Terahertz Nanodevices. <i>ACS Photonics</i> , 2014 , 1, 647-654	6.3	45
274	Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation. <i>Optics Letters</i> , 2014 , 39, 4053-6	3	16
273	Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. <i>Nature</i> , 2014 , 511, 65-9	50.4	400
272	Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 094008	1.7	30
271	Negative refraction and planar focusing based on parity-time symmetric metasurfaces. <i>Physical Review Letters</i> , 2014 , 113, 023903	7.4	162
270	Modular assembly of optical nanocircuits. <i>Nature Communications</i> , 2014 , 5, 3896	17.4	40
269	Transmission-Line Model and Propagation in a Negative-Index, Parallel-Plate Metamaterial to Boost Electron-Beam Interaction. <i>IEEE Transactions on Antennas and Propagation</i> , 2014 , 62, 3212-3221	4.9	6
268	Giant second-harmonic generation efficiency and ideal phase matching with a double Enear-zero cross-slit metamaterial. <i>Physical Review B</i> , 2014 , 89,	3.3	51
267	Physical bounds on electromagnetic invisibility and the potential of superconducting cloaks. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2014 , 12, 330-339	2.6	12
266	Customizing Thermal Emission. <i>Physics Magazine</i> , 2014 , 7,	1.1	16
265	Platonic scattering cancellation for bending waves in a thin plate. Scientific Reports, 2014, 4, 4644	4.9	24
264	Tunable Plasmonic and Hyperbolic Metamaterials Based on Enhanced Nonlinear Response. <i>International Journal of Antennas and Propagation</i> , 2014 , 2014, 1-11	1.2	9
263	CLOAKING AND INVISIBILITY: A REVIEW (Invited Review). <i>Progress in Electromagnetics Research</i> , 2014 , 147, 171-202	3.8	39
262	Parity-time acoustic metamaterials and unidirectional invisible sensors 2014,		1
261	Angular-momentum biasing: A new paradigm for linear, magnetic-free, non-reciprocal devices 2014		3

260	Recent advances on optical metasurfaces. Journal of Optics (United Kingdom), 2014, 16, 123001	1.7	66
259	Optical isolation via unidirectional resonant photon tunneling. Journal of Applied Physics, 2014, 115, 04	31057	16
258	Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves. <i>Journal of the Acoustical Society of America</i> , 2014 , 136, 2935	2.2	15
257	Physical bounds on absorption and scattering for cloaked sensors. <i>Physical Review B</i> , 2014 , 89,	3.3	59
256	Planar hyperlens based on a modulated graphene monolayer. <i>Physical Review B</i> , 2014 , 89,	3.3	37
255	Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. <i>Chinese Physics B</i> , 2014 , 23, 047809	1.2	75
254	Ultra-Thin Unidirectional Carpet Cloak and Wavefront Reconstruction With Graded Metasurfaces. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2014 , 13, 1775-1778	3.8	82
253	Metasurfaces: Ultrafast Electrically Tunable Polaritonic Metasurfaces (Advanced Optical Materials 11/2014). <i>Advanced Optical Materials</i> , 2014 , 2, 1010-1010	8.1	1
252	Alignment-free three-dimensional optical metamaterials. <i>Advanced Materials</i> , 2014 , 26, 1439-45	24	35
251	Temporal soliton excitation in an Thear-zero plasmonic metamaterial. <i>Optics Letters</i> , 2014 , 39, 5566-9	3	22
250	Plasmonic Optical Nanoantennas. <i>Handbook of Surface Science</i> , 2014 , 4, 109-136		4
249	Employing metamaterials for enhanced THz generation in photomixers 2014,		1
248	Chiral Effects in Plasmonic Metasurfaces and Twisted Metamaterials 2014 , 97-125		1
247	Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions 2014,		4
246	Transformation-Based Cloak/Anti-Cloak Interactions: A Review 2014 , 167-190		1
245	Anisotropic Representation for Spatially Dispersive Periodic Metamaterial Arrays 2014 , 395-457		4
244	Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach. <i>Physical Review B</i> , 2013 , 87,	3.3	28
243	Extraordinary sound transmission through density-near-zero ultranarrow channels. <i>Physical Review Letters</i> , 2013 , 111, 055501	7.4	163

242	THz beamforming using graphene-based devices 2013 ,		1
241	Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. <i>Nature Communications</i> , 2013 , 4, 2407	17.4	247
240	Terahertz Metamaterial Devices Based on Graphene Nanostructures. <i>IEEE Transactions on Terahertz Science and Technology</i> , 2013 , 3, 748-756	3.4	80
239	Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space. <i>New Journal of Physics</i> , 2013 , 15, 033037	2.9	103
238	Homogenization of spatially dispersive metamaterial arrays in terms of generalized electric and magnetic polarizations. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2013 , 11, 374-396	2.6	12
237	Nanostructured graphene metasurface for tunable terahertz cloaking. <i>New Journal of Physics</i> , 2013 , 15, 123029	2.9	121
236	Broadening the cloaking bandwidth with non-Foster metasurfaces. <i>Physical Review Letters</i> , 2013 , 111, 233001	7.4	138
235	Do Cloaked Objects Really Scatter Less?. <i>Physical Review X</i> , 2013 , 3,	9.1	45
234	Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles. <i>Physical Review B</i> , 2013 , 87,	3.3	7
233	Plasmonic nanoparticles and metasurfaces to realize Fano spectra at ultraviolet wavelengths. <i>Applied Physics Letters</i> , 2013 , 103, 143113	3.4	36
232	Mantle cloak devices for TE and TM polarizations 2013,		4
231	Graphene metasurface makes the thinnest possible cloak in the terahertz spectrum 2013,		2
230	Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Letters, 2013, 13, 142	2 -17 1.5	94
229	On the physical bounds of cloaking and invisibility 2013 ,		2
228	Comment on "Propagation and Negative Refraction" [Backscatter]. <i>IEEE Microwave Magazine</i> , 2013 , 14, 24-30	1.2	2
227	Metamaterials based on intersubband polaritons 2013,		1
226	Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. <i>Nano Letters</i> , 2013 , 13, 1086-91	11.5	238
225	Theory, Modeling and Features of Optical Nanoantennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 1508-1517	4.9	52

224	A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. <i>Nature Nanotechnology</i> , 2013 , 8, 95-9	28.7	271
223	PT metamaterials via complex-coordinate transformation optics. <i>Physical Review Letters</i> , 2013 , 110, 17	3 <i>9</i> 04	139
222	Acoustic Cloaking with Plasmonic Shells. Springer Series in Materials Science, 2013, 241-265	0.9	1
221	Quantum cloaking based on scattering cancellation. <i>Physical Review B</i> , 2013 , 87,	3.3	41
220	Enhanced superradiance in epsilon-near-zero plasmonic channels. Physical Review B, 2013, 87,	3.3	70
219	Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. <i>Physical Review B</i> , 2013 , 87,	3.3	152
218	Full control of nanoscale optical transmission with a composite metascreen. <i>Physical Review Letters</i> , 2013 , 110, 203903	7.4	554
217	A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter. <i>Nanotechnology</i> , 2013 , 24, 455202	3.4	21
216	Optical nanoantennas and their applications 2013 ,		3
215	Design and simulations of dual-polarized mantle cloaking devices 2013,		3
215	Design and simulations of dual-polarized mantle cloaking devices 2013 , . IEEE Transactions on Antennas and Propagation, 2013 , 61, 33-44	4.9	3
, in the second		4.9	
214	. IEEE Transactions on Antennas and Propagation, 2013, 61, 33-44 Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE		40
214	. IEEE Transactions on Antennas and Propagation, 2013, 61, 33-44 Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE Transactions on Antennas and Propagation, 2013, 61, 1528-1537	4.9	4º 133
214 213 212	. IEEE Transactions on Antennas and Propagation, 2013, 61, 33-44 Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE Transactions on Antennas and Propagation, 2013, 61, 1528-1537 Tunable directive radiation of surface-plasmon diffraction gratings. Optics Express, 2013, 21, 2748-56 Homogenization of three-dimensional metamaterial objects and validation by a fast	4.9	40 133 20
214 213 212 211	. IEEE Transactions on Antennas and Propagation, 2013, 61, 33-44 Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE Transactions on Antennas and Propagation, 2013, 61, 1528-1537 Tunable directive radiation of surface-plasmon diffraction gratings. Optics Express, 2013, 21, 2748-56 Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver. Optics Express, 2013, 21, 21714-27 Characteristic impedance of a microstrip line with a dielectric overlay. COMPEL - the International	4.9 3.3 3.3	40 133 20 5
214 213 212 211 210	. IEEE Transactions on Antennas and Propagation, 2013, 61, 33-44 Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines. IEEE Transactions on Antennas and Propagation, 2013, 61, 1528-1537 Tunable directive radiation of surface-plasmon diffraction gratings. Optics Express, 2013, 21, 2748-56 Homogenization of three-dimensional metamaterial objects and validation by a fast surface-integral equation solver. Optics Express, 2013, 21, 21714-27 Characteristic impedance of a microstrip line with a dielectric overlay. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 1855-1867 Electromagnetic funneling through a single-negative slab paired with a double-positive transformation slab. COMPEL - the International Journal for Computation and Mathematics in	4.9 3.3 3.3 0.7	40 133 20 5 13

(2012-2013)

206	Multilayered plasmonic covers for comblike scattering response and optical tagging. <i>Physical Review Letters</i> , 2013 , 110, 113901	7.4	58
205	Furtive quantum sensing using matter-wave cloaks. <i>Physical Review B</i> , 2013 , 87,	3.3	15
204	Acoustic supercoupling and enhancement of nonlinearities in density-near-zero (DNZ) metamaterial channels 2013 ,		1
203	Strong optical magnetism and Fano resonances in asymmetric plasmonic metamolecules 2013,		1
202	Finding Exoplanets with Quantum Imaging. <i>Physics Magazine</i> , 2013 , 6,	1.1	9
201	Metamaterial-Enhanced Nanophotonics. <i>Optics and Photonics News</i> , 2013 , 24, 35	1.9	4
200	Nanostructured Transparent Conductive Oxide Films for Plasmonic Applications 2013,		2
199	Optical Antennas and Enhanced Nonlinear Effects 2013 , 277-294		
198	Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. <i>Physical Review Letters</i> , 2012 , 108, 263905	7.4	121
197	Exotic properties and potential applications of quantum metamaterials. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 109, 781-788	2.6	11
196	Enhanced nonlinearities using plasmonic nanoantennas. <i>Nanophotonics</i> , 2012 , 1, 221-233	6.3	54
195	Line-source excitation of realistic conformal metasurface cloaks. <i>Journal of Applied Physics</i> , 2012 , 112, 104902	2.5	39
194	Layered plasmonic cloaks to tailor the optical scattering at the nanoscale. <i>Scientific Reports</i> , 2012 , 2, 912	4.9	37
193	Broadband metamaterial for nonresonant matching of acoustic waves. <i>Scientific Reports</i> , 2012 , 2, 340	4.9	59
192	Distributed Amplifiers Based on Spindt-Type Field-Emission Nanotriodes. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 1201-1211	2.6	7
191	Mantle cloaking using sub-wavelength conformal metallic meshes and patches 2012,		1
190	Nonlocal transformation optics. <i>Physical Review Letters</i> , 2012 , 108, 063902	7.4	41
189	Boosting optical nonlinearities in thear-zero plasmonic channels. <i>Physical Review B</i> , 2012 , 85,	3.3	165

188	Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs. <i>Physical Review B</i> , 2012 , 86,	3.3	21
187	Experimental realization of optical lumped nanocircuits at infrared wavelengths. <i>Nature Materials</i> , 2012 , 11, 208-12	27	102
186	Nanocircuit Loading of Plasmonic Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 4381-4390	4.9	5
185	Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays. <i>Journal of Applied Physics</i> , 2012 , 112, 034907	2.5	129
184	Experimental demonstration of a conformal mantle cloak for radio-waves 2012,		2
183	Frequency-selective surface acoustic invisibility for three-dimensional immersed objects. <i>Physical Review B</i> , 2012 , 86,	3.3	17
182	Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2012 , 11, 1414-1417	3.8	93
181	Invisibility and cloaking based on scattering cancellation. <i>Advanced Materials</i> , 2012 , 24, OP281-304	24	140
180	Experimental verification of three-dimensional plasmonic cloaking in free-space. <i>New Journal of Physics</i> , 2012 , 14, 013054	2.9	132
179	Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave. <i>Physical Review B</i> , 2012 , 85,	3.3	38
178	Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. <i>Nature Communications</i> , 2012 , 3, 870	17.4	702
177	Plasmonic Brewster transmission in photonic gratings and crystals 2012 ,		7
176	Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells. <i>Optics Express</i> , 2012 , 20, A39-50	3.3	67
175	Thermal emission from a metamaterial wire medium slab. <i>Optics Express</i> , 2012 , 20, 9784-9	3.3	18
174	Investigation of Leaky-Wave Propagation and Radiation in a Metal Cut-Wire Array. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 1630-1634	4.9	4
173	Matching and funneling light at the plasmonic Brewster angle. <i>Physical Review B</i> , 2012 , 85,	3.3	41
172	Active negative-index metamaterial powered by an electron beam. <i>Physical Review B</i> , 2012 , 86,	3.3	58
171	Plasmonic-type acoustic cloak made of a bilaminate shell. <i>Physical Review B</i> , 2012 , 86,	3.3	29

(2011-2012)

170	Broadband Brewster transmission through 2D metallic gratings. <i>Journal of Applied Physics</i> , 2012 , 112, 094317	2.5	24
169	Taming the thermal emissivity of metals: A metamaterial approach. <i>Applied Physics Letters</i> , 2012 , 100, 201109	3.4	22
168	Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. <i>Physical Review B</i> , 2012 , 85,	3.3	75
167	Efficient directional beaming from small apertures using surface-plasmon diffraction gratings. <i>Applied Physics Letters</i> , 2012 , 101, 041102	3.4	17
166	Integrated infrared nanodevices based on graphene monolayers 2012,		2
165	Things to Do in Austin. <i>IEEE Microwave Magazine</i> , 2012 , 13, S7-S8	1.2	
164	Enhanced Nonlinear Effects in Metamaterials and Plasmonics. Advanced Electromagnetics, 2012, 1, 46	1.2	6
163	Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface. <i>Applied Physics Letters</i> , 2011 , 99, 221106	3.4	37
162	Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures. <i>Physical Review B</i> , 2011 , 84,	3.3	29
161	Manipulating light polarization with ultrathin plasmonic metasurfaces. <i>Physical Review B</i> , 2011 , 84,	3.3	488
160	Cancellation of acoustic scattering from an elastic sphere. <i>Journal of the Acoustical Society of America</i> , 2011 , 129, 1355-65	2.2	63
159	Homogenization of quasi-isotropic metamaterials composed by dense arrays of magnetodielectric spheres. <i>Metamaterials</i> , 2011 , 5, 56-63		19
158	Coupling and guided propagation along parallel chains of plasmonic nanoparticles. <i>New Journal of Physics</i> , 2011 , 13, 033026	2.9	15
157	First-principles homogenization theory for periodic metamaterials. <i>Physical Review B</i> , 2011 , 84,	3.3	210
156	Limitations and potentials of metamaterial lenses. Journal of Nanophotonics, 2011, 5, 053509	1.1	19
155	Mantle cloaking using thin patterned metasurfaces. <i>Physical Review B</i> , 2011 , 84,	3.3	201
154	Causality relations in the homogenization of metamaterials. <i>Physical Review B</i> , 2011 , 84,	3.3	41
153	Guidance Properties of Plasmonic Nanogrooves: Comparison Between the Effective Index Method and the Finite Integration Technique. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 199-202	2 ^{3.8}	7

152	Transmission resonances in plasmonic metallic gratings. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 253	1.7	42
151	Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 1266	1.7	41
150	Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 2362	1.7	10
149	Extremely anisotropic boundary conditions and their optical applications. <i>Radio Science</i> , 2011 , 46, n/a-n/	/a.4	2
148	Modeling and experimental observation of an on-chip two-dimensional far-field interference pattern. <i>Applied Optics</i> , 2011 , 50, 1822-6	0.2	1
147	Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs. <i>Optics Express</i> , 2011 , 19, 22142-55	3.3	15
146	Efficient apertureless scanning probes using patterned plasmonic surfaces. <i>Optics Express</i> , 2011 , 19, 25990-9	3.3	20
145	Atomically thin surface cloak using graphene monolayers. ACS Nano, 2011 , 5, 5855-63	16.7	525
144	Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays. <i>Nano Letters</i> , 2011 , 11, 5514-8	11.5	63
143	Homogenization of plasmonic metasurfaces modeled as transmission-line loads. <i>Metamaterials</i> , 2011 , 5, 90-96		73
142	Bistable and self-tunable negative-index metamaterial at optical frequencies. <i>Physical Review Letters</i> , 2011 , 106, 105503	7.4	64
141	Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. <i>Physical Review Letters</i> , 2011 , 106, 123902	7.4	133
140	PLASMONIC CLOAKING: SCATTERING CANCELLATION WITHOUT ISOLATION 2011 , 263-283		2
139	Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves. <i>Wave Motion</i> , 2011 , 48, 468-482	1.8	40
138	Optical Metamaterials Based on Optical Nanocircuits. <i>Proceedings of the IEEE</i> , 2011 , 99, 1669-1681	14.3	14
137	Chirality and bianisotropy effects in plasmonic metasurfaces and their application to realize ultrathin optical circular polarizers 2011 ,		2
136	Broadband circular polarizers using plasmonic metasurfaces 2011,		1
135	Analytical study of spherical cloak/anti-cloak interactions. <i>Wave Motion</i> , 2011 , 48, 455-467	1.8	16

134	Acoustic scattering cancellation via ultrathin pseudo-surface. <i>Applied Physics Letters</i> , 2011 , 99, 191913	3.4	24
133	Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer. <i>Physical Review B</i> , 2011 , 83,	3.3	26
132	Optical metasurfaces with robust angular response on flexible substrates. <i>Applied Physics Letters</i> , 2011 , 99, 163110	3.4	38
131	Suppressing the Electromagnetic Scattering With an Helical Mantle Cloak. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 1598-1601	3.8	35
130	Restoring the physical meaning of metamaterial constitutive parameters. <i>Physical Review B</i> , 2011 , 83,	3.3	98
129	Comparison of frequency responses of cloaking devices under nonmonochromatic illumination. <i>Physical Review B</i> , 2011 , 84,	3.3	23
128	Poynting vector in negative-index metamaterials. <i>Physical Review B</i> , 2011 , 83,	3.3	29
127	Quenched optical transmission in ultrathin subwavelength plasmonic gratings. <i>Physical Review B</i> , 2011 , 83,	3.3	28
126	Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 024011	1.7	11
125	Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings 2011 ,		8
125	Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings 2011 , Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152	3.5	13
, in the second		3.5	
124	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152 How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical		13
124	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152 How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?. <i>Journal of Nanophotonics</i> , 2010 , 4, 041590 Simulation and Measurement of Surface Wave Propagation Along a Metal Cut-Wire Array. <i>IEEE</i>	1.1	13 69
124 123 122	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152 How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?. <i>Journal of Nanophotonics</i> , 2010 , 4, 041590 Simulation and Measurement of Surface Wave Propagation Along a Metal Cut-Wire Array. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2010 , 9, 179-182	3.8	13 69 2
124 123 122	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152 How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?. <i>Journal of Nanophotonics</i> , 2010 , 4, 041590 Simulation and Measurement of Surface Wave Propagation Along a Metal Cut-Wire Array. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2010 , 9, 179-182 General class of metamaterial transformation slabs. <i>Physical Review B</i> , 2010 , 81,	3.8 3.3	13 69 2 26
124 123 122 121	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152 How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?. <i>Journal of Nanophotonics</i> , 2010 , 4, 041590 Simulation and Measurement of Surface Wave Propagation Along a Metal Cut-Wire Array. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2010 , 9, 179-182 General class of metamaterial transformation slabs. <i>Physical Review B</i> , 2010 , 81, Optical nanoantenna arrays loaded with nonlinear materials. <i>Physical Review B</i> , 2010 , 82, Selected Applications of Transformation Electromagnetics. <i>Advances in Science and Technology</i> ,	3.8 3.3 3.3	13 69 2 26

116	Coaxial-to-Waveguide Matching With \$varepsilon\$-Near-Zero Ultranarrow Channels and Bends. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 328-339	4.9	38
115	Wireless at the nanoscale: optical interconnects using matched nanoantennas. <i>Physical Review Letters</i> , 2010 , 104, 213902	7.4	162
114	Plasmonic cloaking for irregular objects with anisotropic scattering properties. <i>Physical Review E</i> , 2010 , 81, 026602	2.4	40
113	Sub-Wavelength Elliptical Patch Antenna Loaded With \$mu\$-Negative Metamaterials. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 2909-2919	4.9	33
112	Dual-Mode Miniaturized Elliptical Patch Antenna With \$mu\$ -Negative Metamaterials. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2010 , 9, 351-354	3.8	27
111	Power Relations and a Consistent Analytical Model for Receiving Wire Antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 1436-1448	4.9	33
110	Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 213	32 ^{1.7}	16
109	Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles. <i>Physical Review B</i> , 2010 , 82,	3.3	34
108	Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging. <i>Physical Review Letters</i> , 2010 , 105, 263906	7.4	65
107	Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling. New Journal of Physics, 2010 , 12, 103028	2.9	55
106	A transformation-optics-inspired route to sensor invisibility based on cloak/anti-cloak interactions 2010 ,		2
105	Cloaking a receiving antenna or a sensor with plasmonic metamaterials. <i>Metamaterials</i> , 2010 , 4, 153-15	9	37
104	Boosting molecular fluorescence with a plasmonic nanolauncher. <i>Physical Review Letters</i> , 2009 , 103, 043902	7.4	61
103	On Certain Design Criteria for Nanoantennas in the Visible. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 2009-2015	0.3	6
102	Cloaking a sensor. <i>Physical Review Letters</i> , 2009 , 102, 233901	7.4	269
101	Guided propagation along quadrupolar chains of plasmonic nanoparticles. <i>Physical Review B</i> , 2009 , 79,	3.3	31
100	Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy. <i>New Journal of Physics</i> , 2009 , 11, 013026	2.9	20
99	Cloak/anti-cloak interactions. <i>Optics Express</i> , 2009 , 17, 3101-14	3.3	46

(2008-2009)

98	The quest for magnetic plasmons at optical frequencies. Optics Express, 2009, 17, 5723-30	3.3	106
97	Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. <i>Physical Review Letters</i> , 2009 , 103, 153901	7.4	258
96	Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. <i>Journal of Applied Physics</i> , 2009 , 105, 044905	2.5	99
95	Parallel-chain optical transmission line for a low-loss ultraconfined light beam. <i>Physical Review B</i> , 2009 , 80,	3.3	8
94	All optical metamaterial circuit board at the nanoscale. <i>Physical Review Letters</i> , 2009 , 103, 143902	7.4	70
93	Mantle cloak: Invisibility induced by a surface. <i>Physical Review B</i> , 2009 , 80,	3.3	273
92	Antenna matching in thear-zero metamaterial channels 2009 ,		1
91	Nonlinear control of tunneling through an epsilon-near-zero channel. <i>Physical Review B</i> , 2009 , 79,	3.3	54
90	Can Optical Nanoantenna Links Compete with Plasmonic Waveguide Connections? 2009,		1
89	Plasmonic Cloaks. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, 37-47	0.2	1
88	Tuning the scattering response of optical nanoantennas with nanocircuit loads. <i>Nature Photonics</i> , 2008 , 2, 307-310	33.9	307
87	Transmission-line analysis of epsilon -near-zero-filled narrow channels. <i>Physical Review E</i> , 2008 , 78, 016	604	106
86	Dielectric sensing in ?-near-zero narrow waveguide channels. <i>Physical Review B</i> , 2008 , 78,	3.3	106
85	Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. <i>Physical Review B</i> , 2008 , 78,	3.3	59
84	Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. <i>Physical Review Letters</i> , 2008 , 100, 033903	7.4	513
83	Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles. <i>Physical Review B</i> , 2008 , 78,	3.3	99
82	Multifrequency optical invisibility cloak with layered plasmonic shells. <i>Physical Review Letters</i> , 2008 , 100, 113901	7.4	341
81	Robustness in design and background variations in metamaterial/plasmonic cloaking. <i>Radio Science</i> , 2008 , 43, n/a-n/a	1.4	12

80	Effects of size and frequency dispersion in plasmonic cloaking. <i>Physical Review E</i> , 2008 , 78, 045602	2.4	51
79	Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation. <i>Physical Review B</i> , 2008 , 78,	3.3	53
78	Hertzian plasmonic nanodimer as an efficient optical nanoantenna. <i>Physical Review B</i> , 2008 , 78,	3.3	84
77	. IEEE Transactions on Antennas and Propagation, 2008 , 56, 1640-1647	4.9	141
76	Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. <i>Physical Review Letters</i> , 2008 , 101, 043901	7.4	256
75	Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking. <i>New Journal of Physics</i> , 2008 , 10, 115036	2.9	27
74	Cloaking mechanism with antiphase plasmonic satellites. <i>Physical Review B</i> , 2008 , 78,	3.3	30
73	Dispersion Characteristics of Metamaterial Cloaking Structures. <i>Electromagnetics</i> , 2008 , 28, 464-475	0.8	8
72	Design of nanofilters for optical nanocircuits. <i>Physical Review B</i> , 2008 , 77,	3.3	42
71	Nanoinsulators and nanoconnectors for optical nanocircuits. <i>Journal of Applied Physics</i> , 2008 , 103, 064	305 5	30
70	Plasmonic and metamaterial cloaking: physical mechanisms and potentials. <i>Journal of Optics</i> , 2008 , 10, 093002		165
69	Single-Negative, Double-Negative, and Low-index Metamaterials and their Electromagnetic Applications. <i>IEEE Antennas and Propagation Magazine</i> , 2007 , 49, 23-36	1.7	68
68	Metamaterials for transparency and total scattering reduction 2007,		1
68 67	Metamaterials for transparency and total scattering reduction 2007 , Analysis of LII transmission line metamaterials with coupled inductances. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 94-97	1.2	1
	Analysis of LII transmission line metamaterials with coupled inductances. <i>Microwave and Optical</i>	1.2	
67	Analysis of LII transmission line metamaterials with coupled inductances. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 94-97 Exploring the possibility of enhancing the bandwidth of Enegative metamaterials by employing		
67 66	Analysis of LII transmission line metamaterials with coupled inductances. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 94-97 Exploring the possibility of enhancing the bandwidth of Enegative metamaterials by employing tunable varactors. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 55-59 Anomalies of subdiffractive guided wave propagation along metamaterial nanocomponents. <i>Radio</i>	1.2	

(2006-2007)

62	Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials. <i>Physical Review B</i> , 2007 , 75,	3.3	79
61	Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2007, 24, A89	1.7	17
60	Parallel, series, and intermediate interconnections of optical nanocircuit elements 1 Analytical solution. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 3007	1.7	17
59	Parallel, series, and intermediate interconnections of optical nanocircuit elements 2 Nanocircuit and physical interpretation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 3014	1.7	29
58	Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. <i>Optics Express</i> , 2007 , 15, 3318-32	3.3	236
57	Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. <i>Optics Express</i> , 2007 , 15, 7578-90	3.3	127
56	Optical Nahorting wires Ni Optics Express, 2007, 15, 13773-82	3.3	16
55	Coupling of optical lumped nanocircuit elements and effects of substrates. <i>Optics Express</i> , 2007 , 15, 13	8 65 -76	5 25
54	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 13-25	4.9	160
53	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 882-891	4.9	32
52	Parallel-plate metamaterials for cloaking structures. <i>Physical Review E</i> , 2007 , 75, 036603	2.4	167
51	Metamaterials in the far infrared: ideas for left-handed metamaterials and micro- and nanocircuit elements in the terahertz regime 2006 ,		1
50	Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. <i>Physical Review B</i> , 2006 , 74,	3.3	160
49	Miniaturized circular patch antenna with metamaterial loading 2006,		3
48	Physical insight into the "growing" evanescent fields of double-negative metamaterial lenses using their circuit equivalence. <i>IEEE Transactions on Antennas and Propagation</i> , 2006 , 54, 268-272	4.9	13
47	Finite-difference time-domain analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs. <i>Physical Review E</i> , 2006 , 74, 016604	2.4	14
46	Polygonal Patch Antennas with Reactive Impedance Surfaces. <i>Journal of Electromagnetic Waves and Applications</i> , 2006 , 20, 169-182	1.3	6
			_

44	Negative effective permeability and left-handed materials at optical frequencies. <i>Optics Express</i> , 2006 , 14, 1557-67	3.3	236
43	. IEEE Transactions on Antennas and Propagation, 2006 , 54, 1632-1643	4.9	88
42	From Plasmonic Nanocircuit Elements to Volumetric Photonic Negative-Refraction Metamaterials 2006 ,		1
41	Evanescent growth and tunneling through stacks of frequency-selective surfaces. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2005 , 4, 417-420	3.8	18
40	Compact leaky-wave components using metamaterial bilayers 2005,		9
39	CoMetAs: Design of Conformal Omnidirectional Metamaterial Antennas 2005,		2
38	Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and of double-positive metamaterial layers. <i>Journal of Applied Physics</i> , 2005 , 97, 094310	2.5	159
37	Achieving transparency with plasmonic and metamaterial coatings. <i>Physical Review E</i> , 2005 , 72, 016623	2.4	1063
36	Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. <i>Physical Review Letters</i> , 2005 , 95, 095504	7.4	438
35	VCO active integrated antenna with reactive impedance surfaces. <i>Microwave and Optical Technology Letters</i> , 2005 , 47, 82-86	1.2	
34	ANOMALOUS PROPERTIES OF SCATTERING FROM CAVITIES PARTIALLY LOADED WITH DOUBLE-NEGATIVE OR SINGLE-NEGATIVE METAMATERIALS. <i>Progress in Electromagnetics Research</i> , 2005 , 51, 49-63	3.8	19
33	Asymptotic Evaluation of the Mom Excitation Vector for Probe-fed Microstrip Antennas. <i>Journal of Electromagnetic Waves and Applications</i> , 2005 , 19, 1639-1654	1.3	3
32	An Overview of Salient Properties of Planar Guided-Wave Structures with Double-Negative (DNG) and Single-Negative (SNG) Layers 2005 , 339-380		15
31	ELECTROMAGNETIC FIELD SOLUTION IN CONFORMAL STRUCTURES: THEORETICAL AND NUMERICAL ANALYSIS. <i>Progress in Electromagnetics Research</i> , 2004 , 47, 1-25	3.8	2
30	Metamaterial bilayers for enhancement of wave transmission through a small hole in a flat perfectly conducting screen 2004 ,		3
29	DESIGN OF BROAD-BAND POLYGONAL PATCH ANTENNAS FOR MOBILE COMMUNICATIONS. Journal of Electromagnetic Waves and Applications, 2004, 18, 61-72	1.3	3
28	. IEEE Transactions on Vehicular Technology, 2004 , 53, 1434-1440	6.8	11
27	Method of lines numerical analysis of conformal antennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2004 , 52, 1530-1540	4.9	6

26	ON THE EMPLOYMENT OF EDGE BASIS FUNCTIONS TO IMPROVE THE ANALYSIS OF POLYGONAL PATCHES. <i>Journal of Electromagnetic Waves and Applications</i> , 2004 , 18, 397-410	1.3	
25	. IEEE Transactions on Microwave Theory and Techniques, 2004 , 52, 199-210	4.1	180
24	How metamaterials may significantly affect the wave transmission through a sub-wavelength hole in a flat perfectly conducting screen 2003 ,		6
23	Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. <i>IEEE Transactions on Antennas and Propagation</i> , 2003 , 51, 2558-2571	4.9	444
22	. IEEE Transactions on Antennas and Propagation, 2003, 51, 3134-3141	4.9	4
21	Extended method of line procedure for the analysis of microwave components with bianisotropic inhomogeneous media. <i>IEEE Transactions on Antennas and Propagation</i> , 2003 , 51, 1582-1589	4.9	7
20	Distributed-circuit-element description of guided-wave structures and cavities involving double-negative or single-negative media 2003 ,		5
19	U-patch antenna loaded by complex substrates for multifrequency operation. <i>Microwave and Optical Technology Letters</i> , 2002 , 32, 3-5	1.2	3
18	Design of chiral planar integrated antennas with cover via the method of lines. <i>Microwave and Optical Technology Letters</i> , 2002 , 32, 143-145	1.2	1
17	Radiation from a traveling-wave current sheet at the interface between a conventional material and a metamaterial with negative permittivity and permeability. <i>Microwave and Optical Technology Letters</i> , 2002 , 35, 460-463	1.2	36
16	Radiation Properties of Rectangular Patch Antennas With Inhomogeneous Substrates Via a Mom Formulation. <i>Journal of Electromagnetic Waves and Applications</i> , 2002 , 16, 871-881	1.3	2
15	Generalized TelegraphersNand Helmholtz Equations for Conformal Structures With Bi-Anisotropic Loading Materials. <i>Journal of Electromagnetic Waves and Applications</i> , 2002 , 16, 1061-1075	1.3	
14	Electromagnetic Field Solution in Curved Structures with Local Bianisotropic Loading Media 2002 , 439	-448	
13	Optical wave interaction with two-dimensional arrays of plasmonic nanoparticles58-93		6
12	Low cost compact active integrated antenna with a reactive impedance surface		2
11	Nanocircuit elements, nano-transmission lines and nano-antennas using plasmonic materials in the optical domain		4
10	Fundamentals of Waveguide and Antenna Applications Involving DNG and SNG Metamaterials43-85		6
9	DNG, SNG, ENZ and MNZ Metamaterials and Their Potential Applications		4

8	Design of polygonal patch antennas with a broad-band behavior via a proper perturbation of conventional rectangular radiators		4
7			8
6	Dark-State Induced Quantum Nonreciprocity. Advanced Quantum Technologies,2100112	4.3	1
5	Diffusive topological transport in spatiotemporal thermal lattices. <i>Nature Physics</i> ,	16.2	5
4	Roadmap on multimode light shaping. Journal of Optics (United Kingdom),	1.7	8
3	Topological scattering singularities and embedded eigenstates for polarization control and sensing applications. <i>Photonics Research</i> ,	6	10
2	Hyperbolic Shear Polaritons in Low-Symmetry Crystals		3
1	Extreme Diffraction Control in Metagratings Leveraging Bound States in the Continuum and Exceptional Points. <i>Laser and Photonics Reviews</i> ,2100617	8.3	5