Simon Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4453317/publications.pdf

Version: 2024-02-01

	279487	197535
3,132	23	49
citations	h-index	g-index
58	58	3186
docs citations	times ranked	citing authors
	citations 58	3,132 23 citations h-index 58 58

#	Article	IF	CITATIONS
1	Machine Learning in Agriculture: A Review. Sensors, 2018, 18, 2674.	2.1	1,392
2	Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 2019, 184, 111-121.	1.9	150
3	Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry, 1999, 51, 507-510.	1.4	139
4	Are Distributed Ledger Technologies the panacea for food traceability?. Global Food Security, 2019, 20, 145-149.	4.0	135
5	Development of real-time PCR (TaqMan®) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiology and Biochemistry, 2005, 43, 890-899.	2.8	106
6	Agricultural Workforce Crisis in Light of the COVID-19 Pandemic. Sustainability, 2020, 12, 8212.	1.6	69
7	Radiation Transmission and Fluorescence of Nine Greenhouse Cladding Materials. Biosystems Engineering, 1995, 62, 61-69.	0.4	68
8	Mobile Robotics in Agricultural Operations: A Narrative Review on Planning Aspects. Applied Sciences (Switzerland), 2020, 10, 3453.	1.3	61
9	Responsible development of autonomous robotics in agriculture. Nature Food, 2021, 2, 306-309.	6.2	58
10	The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required. Global Food Security, 2019, 23, 116-124.	4.0	56
11	3Dâ€vision based detection, localization, and sizing of broccoli heads in the field. Journal of Field Robotics, 2017, 34, 1505-1518.	3.2	54
12	Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Sensors, 2021, 21, 4537.	2.1	50
13	Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability, 2018, 10, 181.	1.6	44
14	The Effects of Temperature and Light Integral on the Phases of Photoperiod Sensitivity inPetunia×hybrida. Annals of Botany, 1999, 83, 263-269.	1.4	42
15	A Case-Based Economic Assessment of Robotics Employment in Precision Arable Farming. Agronomy, 2019, 9, 175.	1.3	33
16	A model of the effects of temperature on the growth and development of cauliflower (Brassica) Tj ETQq0 0 0 rgl	3T <u> O</u> yerlo	ck 18 Tf 50 14
17	The Effects of Temperature, Photoperiod and Light Integral on the Time to Flowering of Pansy cv. Universal Violet (Viola×wittrockianaGams.). Annals of Botany, 1997, 80, 107-112.	1.4	30
18	The impact of coastal flooding on agriculture: A caseâ€study of Lincolnshire, United Kingdom. Land Degradation and Development, 2020, 31, 1545-1559.	1.8	28

#	Article	IF	CITATIONS
19	Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity. Journal of Experimental Botany, 2001, 52, 655-662.	2.4	27
20	Orchard Mapping with Deep Learning Semantic Segmentation. Sensors, 2021, 21, 3813.	2.1	27
21	An autoencoder wavelet based deep neural network with attention mechanism for multi-step prediction of plant growth. Information Sciences, 2021, 560, 35-50.	4.0	27
22	The effects of far red spectral filters and plant density on the growth and development of chrysanthemums. Scientia Horticulturae, 2004, 102, 335-341.	1.7	25
23	Artificial intelligence and ethics within the food sector: Developing a common language for technology adoption across the supply chain. Trends in Food Science and Technology, 2022, 125, 33-42.	7.8	24
24	3-D Soil Compaction Mapping Through Kriging-Based Exploration With a Mobile Robot. IEEE Robotics and Automation Letters, 2018, 3, 3066-3072.	3.3	23
25	Spectral Filters and Temperature Effects on the Growth and Development of Chrysanthemums under Low Light Integral. Plant Growth Regulation, 2006, 49, 61-68.	1.8	22
26	Optimal Deployment of Solar Insecticidal Lamps Over Constrained Locations in Mixed-Crop Farmlands. IEEE Internet of Things Journal, 2021, 8, 13095-13114.	5.5	21
27	Light quality and temperature effects on antirrhinum growth and development. Journal of Zhejiang University Science B, 2005, 6B, 119-124.	0.4	21
28	Analysis of the brightness temperature features of the lunar surface using 37†GHz channel data from the Chang'E-2 microwave radiometer. Advances in Space Research, 2019, 63, 750-765.	1.2	19
29	Nemesyst: A hybrid parallelism deep learning-based framework applied for internet of things enabled food retailing refrigeration systems. Computers in Industry, 2019, 113, 103133.	5.7	18
30	Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water (Switzerland), 2019, 11, 248.	1.2	14
31	Krigingâ€based robotic exploration for soil moisture mapping using a cosmicâ€ray sensor. Journal of Field Robotics, 2020, 37, 122-136.	3.2	14
32	The Future of Agricultural Jobs in View of Robotization. Sustainability, 2021, 13, 12109.	1.6	14
33	Energy-Efficient Design and Control of a Vibro-Driven Robot. , 2018, , .		13
34	Robotics and Autonomous Systems for Net Zero Agriculture. Current Robotics Reports, 2022, 3, 57-64.	5.1	13
35	RASberry - Robotic and Autonomous Systems for Berry Production. Mechanical Engineering, 2018, 140, S14-S18.	0.0	12
36	A trust framework for digital food systems. Nature Food, 2021, 2, 543-545.	6.2	11

3

#	Article	IF	Citations
37	Can you pick a broccoli? 3D-vision based detection and localisation of broccoli heads in the field. , 2016, , .		10
38	Impact of Demand Side Response on a Commercial Retail Refrigeration System. Energies, 2018, 11, 371.	1.6	10
39	The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops. Scientific Reports, 2020, 10, 15358.	1.6	10
40	Mobile Real-Time Grasshopper Detection and Data Aggregation Framework. Scientific Reports, 2020, 10, 1150.	1.6	10
41	Power and energy analysis for a commercial retail refrigeration system responding to a static demand side response. International Journal of Electrical Power and Energy Systems, 2020, 117, 105645.	3.3	9
42	Using Additional Moderator to Control the Footprint of a COSMOS Rover for Soil Moisture Measurement. Water Resources Research, 2021, 57, e2020WR028478.	1.7	7
43	Considering the ethical implications of digital collaboration in the Food Sector. Patterns, 2021, 2, 100335.	3.1	7
44	Inflorescence commitment and subsequent development differ in their responses to temperature and photoperiod in Osteospermum jucundum. Physiologia Plantarum, 1998, 104, 225-231.	2.6	5
45	Contact Detection and Size Estimation Using a Modular Soft Gripper with Embedded Flex Sensors. , 2018, , .		5
46	Relationship between temperature and cauliflower (Brassica oleracea L. var. botrytis) growth and development after curd initiation. Plant Growth Regulation, 2007, 52, 61-72.	1.8	4
47	Applications of robotic and solar energy in precision agriculture and smart farming. , 2022, , 351-390.		4
48	Environmental regulation of flowering time in heliotrope (Heliotropium arborescens L. cv. Marine). Scientia Horticulturae, 2000, 85, 231-241.	1.7	3
49	Framing food security and food loss statistics for incisive supply chain improvement and knowledge transfer between Kenyan, Indian and United Kingdom food manufacturers. Emerald Open Research, 0, 2, 12.	0.0	3
50	11 Physiology. Developments in Plant Genetics and Breeding, 1999, , 359-373.	0.6	2
51	Modelling of Thermostatically Controlled Loads to Analyse the Potential of Delivering FFR DSR with a Large Network of Compressor Packs. , 2017, , .		2
52	Tea Chrysanthemum Detection by Leveraging Generative Adversarial Networks and Edge Computing. Frontiers in Plant Science, 2022, 13, 850606.	1.7	2
53	The agricultural occupations landscape in view of work automation. , 2021, , 289-348.		1
54	Optical and thermal properties of commercial polymer film, modeling the albedo effect. Journal of Applied Polymer Science, 2021, 138, 50581.	1.3	1