Mohammad Hadi Moayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4453012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corrosion Science, 2014, 78, 138-150.	6.6	250
2	Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature. Corrosion Science, 2006, 48, 1004-1018.	6.6	146
3	Metastable Pitting and the Critical Pitting Temperature. Journal of the Electrochemical Society, 1998, 145, 2622-2628.	2.9	139
4	Dependence of the Critical Pitting Temperature on surface roughness. Corrosion Science, 2003, 45, 1203-1216.	6.6	126
5	Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel. Corrosion Science, 2011, 53, 637-644.	6.6	88
6	A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques. Corrosion Science, 2012, 59, 96-102.	6.6	84
7	Theoretical and electrochemical assessment of inhibitive behavior of some thiophenol derivatives on mild steel in HCl. Corrosion Science, 2011, 53, 3058-3067.	6.6	82
8	Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel. Corrosion Science, 2014, 80, 290-298.	6.6	82
9	Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1M NaCl at various molybdate concentrations. Corrosion Science, 2011, 53, 513-522.	6.6	81
10	Inhibitive effect of synthesized 2-(3-pyridyl)-3,4-dihydro-4-quinazolinone as a corrosion inhibitor for mild steel in hydrochloric acid. Materials Chemistry and Physics, 2011, 126, 873-879.	4.0	76
11	EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidified ferric chloride solution. Corrosion Science, 2014, 80, 197-204.	6.6	75
12	Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium. Corrosion Science, 2011, 53, 1278-1287.	6.6	73
13	In situ inhibitor synthesis from admixture of benzaldehyde and benzene-1,2-diamine along with FeCl3 catalyst as a new corrosion inhibitor for mild steel in 0.5M sulphuric acid. Corrosion Science, 2013, 71, 20-31.	6.6	71
14	EIS examination of mill scale on mild steel with polyester–epoxy powder coating. Progress in Organic Coatings, 2004, 50, 162-165.	3.9	65
15	Deterioration in critical pitting temperature of 904L stainless steel by addition of sulfate ions. Corrosion Science, 2006, 48, 3513-3530.	6.6	63
16	Corrosion evaluation of multi-pass welded nickel–aluminum bronze alloy in 3.5% sodium chloride solution: A restorative application of gas tungsten arc welding process. Materials & Design, 2014, 58, 346-356.	5.1	61
17	The Relationship Between Pit Chemistry and Pit Geometry Near the Critical Pitting Temperature. Journal of the Electrochemical Society, 2006, 153, B330.	2.9	58
18	Comparative study on corrosion behaviour of Nitinol and stainless steel orthodontic wires in simulated saliva solution in presence of fluoride ions. Materials Science and Engineering C, 2013, 33, 2084-2093.	7.3	55

#	Article	IF	CITATIONS
19	Effect of Thiosulfate on Pitting Corrosion of 316SS. Journal of the Electrochemical Society, 2015, 162, C71-C77.	2.9	42
20	Tuning DOS measuring parameters based on double-loop EPR in H2SO4 containing KSCN by Taguchi method. Corrosion Science, 2010, 52, 2653-2660.	6.6	41
21	Investigation on the effect of nitrate ion on the critical pitting temperature of 2205 duplex stainless steel along a mechanistic approach using pencil electrode. Corrosion Science, 2014, 85, 222-231.	6.6	34
22	Effect of Thiosulfate on Pitting Corrosion of 316SS. Journal of the Electrochemical Society, 2015, 162, C121-C127.	2.9	32
23	Aggressive effects of pitting "inhibitors―on highly alloyed stainless steels. Corrosion Science, 1998, 40, 519-522.	6.6	30
24	Post-weld heat treatment influence on galvanic corrosion of GTAW of 17-4PH stainless steel in 3·5%NaCl. Corrosion Engineering Science and Technology, 2011, 46, 415-424.	1.4	25
25	Synthesis of nano HA/βTCP mesoporous particles using a simple modification in granulation method. Materials Science and Engineering C, 2019, 96, 859-871.	7.3	25
26	Pit Transition Potential and Repassivation Potential of Stainless Steel in Thiosulfate Solution. Journal of the Electrochemical Society, 2016, 163, C275-C281.	2.9	22
27	Using pit solution chemistry for evaluation of metastable pitting stability of austenitic stainless steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 166-173.	1.5	20
28	An investigation on the effect of bleaching environment on pitting corrosion and transpassive dissolution of 316 stainless steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 39-43.	1.5	15
29	Improving the corrosion behaviour of powder metallurgical 316L alloy by prepassivation in 20% nitric acid. Corrosion Science, 2011, 53, 135-146.	6.6	15
30	The Contrast between the Pitting Corrosion of 316 SS in NaCl and NaBr Solutions: Part I. Evolution of Metastable Pitting and Stable Pitting. Journal of the Electrochemical Society, 2019, 166, C65-C75.	2.9	14
31	Investigation on the effect of various surface preparations on corrosion performance of powder coated steel by EIS. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 325-328.	1.5	11
32	Effect of thermomechanical processing on hydrogen permeation in API X70 pipeline steel. Materials Chemistry and Physics, 2018, 220, 360-365.	4.0	11
33	Inhibitive assessment of 1-(7-methyl-5-morpholin-4-yl-thiazolo[4,5-d]pyrimidin-2-yl)-hydrazine as a corrosion inhibitor for mild steel in sulfuric acid solution. Journal of the Iranian Chemical Society, 2013, 10, 831-839.	2.2	9
34	In Situ Synthesis of 2-Phenylbenzimidazole as an Hydrogen Sulfide Corrosion Inhibitor of Carbon Steel. Corrosion, 2013, 69, 1195-1204.	1.1	9
35	The effects of different additives in electrolyte of AGM batteries on self-discharge. Journal of Power Sources, 2006, 158, 705-709.	7.8	8
36	A novel electrochemical approach on the effect of alloying elements on self-discharge and discharge discharge delivered current density of Pb–Ca–Ag lead-acid battery plates. Journal of Power Sources, 2011, 196, 10424-10429.	7.8	8

#	Article	IF	CITATIONS
37	Beeswax-Colophony Blend: A Novel Green Organic Coating for Protection of Steel Drinking Water Storage Tanks. Metals, 2015, 5, 1645-1664.	2.3	8
38	Hydrometallurgical Extraction of Vanadium from Mechanically Milled Oil-Fired Fly Ash: Analytical Process Optimization by Using Taguchi Design Method. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2012, 43, 1269-1276.	2.1	7
39	New High-Resolution Solution for Measuring Degree of Sensitization of Duplex Stainless Steel 2205 Using Double-Loop Electrochemical Potentiodynamic Reactivation Technique. Corrosion, 2013, 69, 230-242.	1.1	7
40	Galvanic corrosion of gas tungsten arc repair welds in 17-4PH stainless steel in 3·5% NaCl solution. Corrosion Engineering Science and Technology, 2011, 46, 406-414.	1.4	6
41	The Contrast between the Pitting Corrosion of 316 SS in NaCl and NaBr Solutions: Part II. Morphology, Chemistry, and Stabilization of the Pits. Journal of the Electrochemical Society, 2019, 166, C321-C331.	2.9	6
42	Mechanistic Investigation on the Effect of Molybdate on the Critical Pitting Temperature of 2205 Duplex Stainless Steel. Journal of the Electrochemical Society, 2019, 166, C101-C107.	2.9	6
43	Dependence of the Electrochemical and Passive Behavior of the Lead-Acid Battery Positive Grid on Electrode Surface Roughness. Corrosion, 2017, 73, 1359-1366.	1.1	4
44	Investigation of the Microstructure Dependence of Critical Pitting Temperature and Pitting Potential in a 2205 Duplex Stainless Steel. Journal of the Electrochemical Society, 2021, 168, 111501.	2.9	4
45	Improving pore morphology of PM 316L stainless steels by prealloyed powder prepassivation in 20% nitric acid. Powder Metallurgy, 2011, 54, 566-571.	1.7	3
46	Influence of heat treatment on microstructure and passivity of Cu–30Zn–1Sn alloy in buffer solution containing chloride ions. Bulletin of Materials Science, 2012, 35, 89-97.	1.7	3
47	A new equation proposed for evaluation of IR drop on buried pipelines. Anti-Corrosion Methods and Materials, 2013, 60, 312-318.	1.5	2
48	Pitting Corrosion of 17-4PH Stainless Steel: Impingement of a Fluid Jet vs. Erosion–Corrosion in the Presence of the Solid Particles. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	1
49	Effect of Molybdate on the Stability of Pit Growth in Duplex Stainless Steel 2205. Journal of the Electrochemical Society, 2021, 168, 111505.	2.9	0