
Chen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452941/publications.pdf Version: 2024-02-01

CHEN WANC

#	Article	IF	CITATIONS
1	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long‣asting Selfâ€Cleaning Textiles. Angewandte Chemie - International Edition, 2022, 61, e202115956.	13.8	45
2	Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long‣asting Selfâ€Cleaning Textiles. Angewandte Chemie, 2022, 134, .	2.0	3
3	Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM. Analytical Chemistry, 2022, 94, 7169-7173.	6.5	6
4	Perovskite films passivated by a dendrimer toward high efficiency and high stability devices. Journal of Power Sources, 2022, 536, 231518.	7.8	1
5	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	13.7	174
6	Strong Bidentate Coordination for Surface Passivation and Ligand-Shell Engineering of Lead Halide Perovskite Nanocrystals in the Strongly Quantum-Confined Regime. Journal of Physical Chemistry C, 2021, 125, 24521-24530.	3.1	4
7	Systematic control of the rate of singlet fission within 6,13-diphenylpentacene aggregates with PbS quantum dot templates. Faraday Discussions, 2019, 216, 162-173.	3.2	4
8	Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nature Chemistry, 2019, 11, 1034-1040.	13.6	178
9	Mechanisms of Ultrafast Charge Separation in a PTB7/Monolayer MoS ₂ van der Waals Heterojunction. Journal of Physical Chemistry Letters, 2018, 9, 2484-2491.	4.6	57
10	The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. Chemical Communications, 2017, 53, 1981-1984.	4.1	13
11	Distance-Dependence of Interparticle Energy Transfer in the Near-Infrared within Electrostatic Assemblies of PbS Quantum Dots. ACS Nano, 2017, 11, 5041-5050.	14.6	38
12	Reversible Modulation of the Electrostatic Potential of a Colloidal Quantum Dot through the Protonation Equilibrium of Its Ligands. Journal of Physical Chemistry Letters, 2017, 8, 4981-4987.	4.6	6
13	Ligand-Free, Quantum-Confined Cs ₂ Snl ₆ Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 7901-7907.	6.7	98
14	Accelerating FRET between Near-Infrared Emitting Quantum Dots Using a Molecular J-Aggregate as an Exciton Bridge. Nano Letters, 2017, 17, 5666-5671.	9.1	37
15	Sub-Nanosecond Resonance Energy Transfer in the Near-Infrared within Self-Assembled Conjugates of PbS Quantum Dots and Cyanine Dye J-Aggregates. Journal of the American Chemical Society, 2016, 138, 9557-9564.	13.7	37
16	Resonance Raman Spectroscopy of the T ₁ Triplet Excited State of Oligothiophenes. Journal of Physical Chemistry Letters, 2015, 6, 3521-3527.	4.6	16
17	Resonance Raman Spectra of a Perylene Bis(dicarboximide) Chromophore in Ground and Lowest Triplet States. Journal of Physical Chemistry A, 2013, 117, 9196-9204.	2.5	34
18	Singlet fission in carotenoid aggregates: insights from transient absorption spectroscopy. Proceedings of SPIE, 2012, , .	0.8	27

CHEN WANG

#	Article	IF	CITATIONS
19	Characterization of Carotenoid Aggregates by Steady-State Optical Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 10617-10630.	2.6	75
20	Infrared Nanoscopy of Dirac Plasmons at the Graphene–SiO ₂ Interface. Nano Letters, 2011, 11, 4701-4705.	9.1	500
21	Triplet Excitons of Carotenoids Formed by Singlet Fission in a Membrane. ChemPhysChem, 2011, 12, 2891-2894.	2.1	51
22	Singlet Fission and Triplet Dynamics in Carotenoid Aggregates Probed with Picosecond Resonance Raman Spectroscopy. , 2010, , .		0
23	High-Yield Singlet Fission in a Zeaxanthin Aggregate Observed by Picosecond Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2010, 132, 13988-13991.	13.7	202
24	lsomerization of α-Pinene Over Porous Phosphate Heterostructure Materials: Effects of Porosity and Acidity. Catalysis Letters, 2009, 131, 560-565.	2.6	9
25	Solvent Effects on Supramolecular Networks Formed by Racemic Star-Shaped Oligofluorene Studied by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2008, 112, 8649-8653.	3.1	56
26	Delamination and intercalation of layered aluminophosphate with [Al2P3O12]3- stoichiometry by a controlled two-step method. Studies in Surface Science and Catalysis, 2007, 165, 143-146.	1.5	0
27	Delaminated microporous aluminophosphate-filled polyvinyl alcohol membrane for pervaporation of aqueous alcohol solutions. Microporous and Mesoporous Materials, 2007, 105, 149-155.	4.4	8
28	Delamination and aromatic amine intercalation of layered aluminophosphate with [Al3P4O16]3â^' stoichiometry. Journal of Colloid and Interface Science, 2005, 285, 731-736.	9.4	11
29	Controlled delamination and intercalation of layered microporous aluminophosphate by a novel two-step method. Microporous and Mesoporous Materials, 2005, 84, 297-301.	4.4	5