Liang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compact light field photography towards versatile three-dimensional vision. Nature Communications, 2022, 13, .	12.8	11
2	Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging. Nature Communications, 2021, 12, 2179.	12.8	29
3	Review of bio-optical imaging systems with a high space-bandwidth product. Advanced Photonics, 2021, 3, .	11.8	48
4	High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proceedings of the United States of America, 2021, 118, .	7.1	28
5	Snapshot hyperspectral light field tomography. Optica, 2021, 8, 1552.	9.3	14
6	Continuously streaming compressed high-speed photography using time delay integration. Optica, 2021, 8, 1620.	9.3	8
7	Active optical mapping for high-speed and hyperspectral imaging. , 2021, , .		0
8	Snapshot multidimensional photography through active optical mapping. Nature Communications, 2020, 11, 5602.	12.8	11
9	Plenoptic Face Presentation Attack Detection. IEEE Access, 2020, 8, 59007-59014.	4.2	4
10	Improving non-line-of-sight image reconstruction with weighting factors. Optics Letters, 2020, 45, 3921.	3.3	9
11	Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 2020, 7, 1563.	9.3	216
12	Development of a parameterization image stitching algorithm for ultrashort throw laser MEMS projectors. Journal of the Society for Information Display, 2019, 27, 708-714.	2.1	0
13	All-passive transformable optical mapping near-eye display. Scientific Reports, 2019, 9, 6064.	3.3	7
14	Computational holographic Maxwellian near-eye display with an expanded eyebox. Scientific Reports, 2019, 9, 18749.	3.3	43
15	Robust structured-light depth mapping via recursive decomposition of binary codes. Optical Engineering, 2019, 58, 1.	1.0	5
16	Optical design and development of a snapshot light-field laryngoscope. Optical Engineering, 2018, 57, 1.	1.0	5
17	Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. Science Advances, 2017, 3, e1601814.	10.3	101
18	Advances in Computational Imaging: Theory, Algorithms, and Systems. Mathematical Problems in Engineering, 2017, 2017, 1-2.	1.1	0

Liang Gao

#	Article	IF	CITATIONS
19	Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 2016, 3, 694.	9.3	57
20	Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 2016, 5, 497-509.	6.0	49
21	Compressed ultrafast photography: Redefining the limit of passive ultrafast imaging. , 2016, , .		0
22	A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Physics Reports, 2016, 616, 1-37.	25.6	113
23	Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Scientific Reports, 2015, 5, 15504.	3.3	52
24	Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. Journal of Biophotonics, 2015, 8, 441-456.	2.3	138
25	Multiview optical resolution photoacoustic microscopy. Optica, 2014, 1, 217.	9.3	40
26	Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 2014, 516, 74-77.	27.8	450
27	Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry. Applied Physics Letters, 2013, 102, 193705.	3.3	37
28	Photobleaching imprinting microscopy: seeing clearer and deeper. Journal of Cell Science, 2013, 127, 288-94.	2.0	12
29	Single-cell photoacoustic thermometry. Journal of Biomedical Optics, 2013, 18, 026003.	2.6	60
30	Photothermal bleaching in timeâ€lapse photoacoustic microscopy. Journal of Biophotonics, 2013, 6, 543-548.	2.3	12
31	Correction of vignetting and distortion errors induced by two-axis light beam steering. Optical Engineering, 2012, 51, 043203.	1.0	13
32	Image mapping spectrometry: calibration and characterization. Optical Engineering, 2012, 51, 1.	1.0	41
33	Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS). Biomedical Optics Express, 2012, 3, 48.	2.9	70
34	Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems. Optical Engineering, 2012, 51, 111702.	1.0	109
35	Nanoshells for <i>in vivo</i> imaging using two-photon excitation microscopy. Nanotechnology, 2011, 22, 365102.	2.6	12
36	Depth-resolved image mapping spectrometer (IMS) with structured illumination. Optics Express, 2011, 19, 17439.	3.4	36

#	Article	IF	CITATIONS
37	Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy. Optics Express, 2010, 18, 14330.	3.4	224
38	Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. Optics Express, 2009, 17, 12293.	3.4	123