Michele Laus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of spin casting solvent on the selfâ€assembly of siliconâ€containing block copolymer thin films via high temperature thermal treatment. Polymer International, 2022, 71, 426-435.	3.1	3
2	Short <i>vs.</i> long chains competition during " <i>grafting to</i> ―process from melt. Polymer Chemistry, 2022, 13, 3904-3914.	3.9	6
3	Evidence of Mechanochemical Control in "Grafting to―Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules, 2021, 54, 499-508.	4.8	11
4	Doping of silicon with phosphorus end-terminated polymers: source characterization and dopant diffusion in SiO ₂ . Journal of Materials Chemistry C, 2021, 9, 4020-4028.	5.5	8
5	Dithiols as Liquid Crystalline Building Blocks for Smart Polymers via Thiol–yne Click Chemistry. ACS Applied Polymer Materials, 2021, 3, 1602-1609.	4.4	7
6	Cell instructive Liquid Crystalline Networks for myotube formation. IScience, 2021, 24, 103077.	4.1	8
7	Microplastic Contamination in Snow from Western Italian Alps. International Journal of Environmental Research and Public Health, 2021, 18, 768.	2.6	49
8	Quantification of molecular weight discrimination in <i>grafting to</i> reactions from ultrathin polymer films by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst, The, 2021, 146, 6145-6155.	3.5	8
9	Silicon Doping by Polymer Grafting: Size Distribution Matters. ACS Applied Polymer Materials, 2021, 3, 6383-6393.	4.4	8
10	Inside the brush: partition by molecular weight in grafting to reactions from melt. Polymer Chemistry, 2021, 12, 6538-6547.	3.9	6
11	Magnetic molecularly imprinted multishell particles for zearalenone recognition. Polymer, 2020, 188, 122102.	3.8	7
12	Tailored inclusion of semiconductor nanoparticles in nanoporous polystyrene-block-polymethyl methacrylate thin films. Polymer, 2020, 210, 122983.	3.8	2
13	Occurrence of microplastics in pellets from the common kingfisher (Alcedo atthis) along the Ticino River, North Italy. Environmental Science and Pollution Research, 2020, 27, 41731-41739.	5.3	32
14	HPLC method for the determination of monomer conversion and composition during the poly(styrene- <i>r</i> -methylmethacrylate) polymerization. International Journal of Polymer Analysis and Characterization, 2020, 25, 188-197.	1.9	0
15	Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2020, 8, 16513-16519.	5.5	19
16	Elastomeric Electrospun Scaffolds of a Biodegradable Aliphatic Copolyester Containing PEG-Like Sequences for Dynamic Culture of Human Endothelial Cells. Biomolecules, 2020, 10, 1620.	4.0	6
17	Doping of silicon by phosphorus end-terminated polymers: drive-in and activation of dopants. Journal of Materials Chemistry C, 2020, 8, 10229-10237.	5.5	17
18	Effect of Trapped Solvent on the Interface between PS- <i>b</i> PMMA Thin Films and P(S- <i>r</i> MMA) Brush Layers. ACS Applied Materials & Interfaces, 2020, 12, 7777-7787.	8.0	21

#	Article	IF	CITATIONS
19	Core–shell silica–rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing. RSC Advances, 2020, 10, 14958-14964.	3.6	5
20	Thermal Degradation in Ultrathin Films Outperforms Dose Control of n-Type Polymeric Dopants for Silicon. ACS Applied Electronic Materials, 2019, 1, 1807-1816.	4.3	15
21	Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment. Scientific Reports, 2019, 9, 15782.	3.3	7
22	Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers, 2019, 11, 1644.	4.5	8
23	A Novel Magnetic Molecular Imprinted Polymer for Selective Extraction of Zearalenone from Cereal Flours before Liquid Chromatography-Tandem Mass Spectrometry Determination. Toxins, 2019, 11, 493.	3.4	14
24	Mixed morphology in low molar mass fluorinated block copolymers. Polymer, 2019, 179, 121657.	3.8	2
25	Effect of the Density of Reactive Sites in P(Sâ€ <i>r</i> â€MMA) Film during Al ₂ O ₃ Growth by Sequential Infiltration Synthesis. Advanced Materials Interfaces, 2019, 6, 1900503.	3.7	19
26	Technological strategies for self-assembly of PS-b-PDMS in cylindrical sub-10 nm nanostructures for lithographic applications. Advances in Physics: X, 2018, 3, 1445558.	4.1	6
27	Development of an enrichment method for endogenous phosphopeptide characterization in human serum. Analytical and Bioanalytical Chemistry, 2018, 410, 1177-1185.	3.7	22
28	New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta, 2018, 178, 274-281.	5.5	42
29	Control of Doping Level in Semiconductors <i>via</i> Self-Limited Grafting of Phosphorus End-Terminated Polymers. ACS Nano, 2018, 12, 178-186.	14.6	35
30	Multishell hybrid magnetic nanoparticles for phosphopeptide enrichment. AIP Conference Proceedings, 2018, , .	0.4	0
31	Relaxation Dynamics in Polyethylene Glycol/Modified Hydrotalcite Nanocomposites. Polymers, 2018, 10, 1182.	4.5	4
32	Analysis of phosphorus-end capped functionalpolymers, from bulk to ultrathin films. AIP Conference Proceedings, 2018, , .	0.4	0
33	Biodegradation of unvulcanized natural rubber by microorganisms isolated from soil and rubber surface: A preliminary study. Bioremediation Journal, 2018, 22, 43-52.	2.0	18
34	Hierarchical Order in Dewetted Block Copolymer Thin Films on Chemically Patterned Surfaces. ACS Nano, 2018, 12, 7076-7085.	14.6	22
35	Deterministic doping via self-limited grafting of phosphorus end-terminated polymers. AIP Conference Proceedings, 2018, , .	0.4	0
36	Natural polymer blends: Thermal and mechanical behavior. AIP Conference Proceedings, 2018, , .	0.4	1

#	Article	IF	CITATIONS
37	Boron-terminated polystyrene as potential spin-on dopant for microelectronic applications. AIP Conference Proceedings, 2018, , .	0.4	0
38	From grafting to to grafting from. AIP Conference Proceedings, 2018, , .	0.4	1
39	Ordering kinetics in two-dimensional hexagonal pattern of cylinder-forming PS- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>b</mml:mi> -PMMA block copolymer thin films: Dependence on the segregation strength. Physical Review Materials, 2018, 2, .</mml:math 	2.4	8
40	Colloidal Lithography. , 2018, , 805-814.		0
41	RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2164-2175.	2.7	27
42	Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S- <i>r</i> -MMA)/PS- <i>b</i> -PMMA Systems with Different Thicknesses. ACS Applied Materials & Interfaces, 2017, 9, 31215-31223.	8.0	15
43	Toward Lateral Length Standards at the Nanoscale Based on Diblock Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 15685-15697.	8.0	14
44	GISAXS Analysis of the In-Depth Morphology of Thick PS- <i>b</i> -PMMA Films. ACS Applied Materials & Interfaces, 2017, 9, 11054-11063.	8.0	24
45	TGA-GC–MS quantitative analysis of phosphorus-end capped functional polymers in bulk and ultrathin films. Journal of Analytical and Applied Pyrolysis, 2017, 128, 238-245.	5.5	16
46	Cover Image, Volume 66, Issue 3. Polymer International, 2017, 66, i-i.	3.1	0
47	High temperature surface neutralization process with random copolymers for block copolymer selfâ€assembly. Polymer International, 2017, 66, 459-467.	3.1	21
48	Molar mass and composition effects on the thermal stability of functional P(S- <i>r</i> -MMA) random copolymers for nanolithographic applications. Molecular Systems Design and Engineering, 2017, 2, 581-588.	3.4	4
49	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. ACS Applied Materials & Interfaces, 2016, 8, 9897-9908.	8.0	19
50	A Multiâ€optical Collector of Sunlight Employing Luminescent Materials and Photonic Nanostructures. Advanced Optical Materials, 2016, 4, 147-155.	7.3	14
51	Surface engineering with functional random copolymers for nanolithographic applications. AIP Conference Proceedings, 2016, , .	0.4	1
52	Neutral wetting brush layers for block copolymer thin films using homopolymer blends. AIP Conference Proceedings, 2016, , .	0.4	0
53	Composition of ultrathin binary polymer brushes by thermogravimetry–gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 3155-3163.	3.7	6
54	Enhanced Lateral Ordering in Cylinder Forming PS- <i>b</i> -PMMA Block Copolymers Exploiting the Entrapped Solvent. ACS Applied Materials & Interfaces, 2016, 8, 8280-8288.	8.0	22

#	Article	IF	CITATIONS
55	Films made from poly(vinyl alcoholâ€ <i>co</i> â€ethylene) and soluble biopolymers isolated from municipal biowaste. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
56	Polycarbonateâ€based composites reinforced by in situ polytetrafluoroethylene fibrillation: Preparation, thermal and rheological behavior. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
57	Films made from poly(vinyl alcoholâ€ <i>co</i> â€ethylene) and soluble biopolymers isolated from postharvest tomato plant. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
58	Thickness and Microdomain Orientation of Asymmetric PS- <i>b</i> -PMMA Block Copolymer Films Inside Periodic Gratings. ACS Applied Materials & Interfaces, 2015, 7, 23615-23622.	8.0	11
59	Thermal Stability of Functional P(S-r-MMA) Random Copolymers for Nanolithographic Applications. ACS Applied Materials & Interfaces, 2015, 7, 3920-3930.	8.0	28
60	Films made from polyethyleneâ€∢i>coâ€acrylic acid and soluble biopolymers sourced from agricultural and municipal biowaste. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
61	Polymer Distributed Bragg Reflectors for Vapor Sensing. ACS Photonics, 2015, 2, 537-543.	6.6	100
62	Photopolymerized Network Polysiloxane Films with Dangling Hydrophilic/Hydrophobic Chains for the Biofouling Release of Invasive Marine Serpulid <i>Ficopomatus enigmaticus</i> . ACS Applied Materials & Interfaces, 2015, 7, 8293-8301.	8.0	40
63	Ultrathin Random Copolymer-Grafted Layers for Block Copolymer Self-Assembly. ACS Applied Materials & Interfaces, 2015, 7, 10944-10951.	8.0	71
64	Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. Journal of Inorganic Biochemistry, 2015, 151, 132-142.	3.5	22
65	Scaling of correlation length in lamellae forming PS-b-PMMA thin films upon high temperature rapid thermal treatments. Journal of Materials Chemistry C, 2015, 3, 8618-8624.	5.5	29
66	Hybrid ZnO:polystyrene nanocomposite for allâ€polymer photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 158-162.	0.8	30
67	Spherical Colloid Engineering. , 2015, , 103-125.		0
68	Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing. Nanotechnology, 2014, 25, 275601.	2.6	26
69	High Aspect Ratio PS- <i>b</i> -PMMA Block Copolymer Masks for Lithographic Applications. ACS Applied Materials & Interfaces, 2014, 6, 21389-21396.	8.0	35
70	Colloidal Lithography. , 2014, , 541-550.		1
71	Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS- <i>b</i> -PMMA thin films. Nanotechnology, 2014, 25, 045301.	2.6	31
72	Evidence of Cybotactic Order in the Nematic Phase of a Main-Chain Liquid Crystal Polymer with Bent-Core Repeat Unit. ACS Macro Letters, 2014, 3, 91-95.	4.8	29

#	Article	IF	CITATIONS
73	Colloidal Lithography. , 2014, , 1-9.		0
74	Thermally induced orientational flipping of cylindrical phase diblock copolymers. Journal of Materials Chemistry C, 2014, 2, 2175-2182.	5.5	20
75	Characterization of ultra-thin polymeric films by Gas chromatography-Mass spectrometry hyphenated to thermogravimetry. Journal of Chromatography A, 2014, 1368, 204-210.	3.7	31
76	Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing. Journal of Materials Chemistry C, 2014, 2, 6655-6664.	5.5	54
77	Flash grafting of functional random copolymers for surface neutralization. Journal of Materials Chemistry C, 2014, 2, 4909-4917.	5.5	43
78	Rigid amorphous fraction and melting behavior of poly(ethylene terephthalate). Colloid and Polymer Science, 2014, 292, 1365-1374.	2.1	27
79	Temperature dependence of the rigid amorphous fraction in poly(ethylene terephthalate). European Polymer Journal, 2014, 58, 60-68.	5.4	54
80	Bessel-like photonic nanojets from core-shell sub-wavelength spheres. Optics Letters, 2014, 39, 3989.	3.3	39
81	Fine Tuning of Lithographic Masks through Thin Films of PS- <i>b</i> -PMMA with Different Molar Mass by Rapid Thermal Processing. ACS Applied Materials & Interfaces, 2014, 6, 7180-7188.	8.0	64
82	Vitamin E acetate addition to poly(<scp>d,l</scp>)lactic acid modifies its mechanical behavior without affecting biocompatibility. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
83	Biocompatible Anionic Polymeric Microspheres as Priming Delivery System for Effetive HIV/AIDS Tat-Based Vaccines. PLoS ONE, 2014, 9, e111360.	2.5	4
84	The surface nanostructurations by means of near field enhancement with nanospheres. Proceedings of SPIE, 2013, , .	0.8	1
85	Depth Profiling and Melting of Nanoparticles in Secondary Ion Mass Spectrometry (SIMS). Journal of Physical Chemistry C, 2013, 117, 16042-16052.	3.1	26
86	Thermal and mechanical properties of PES/PTFE composites and nanocomposites. Journal of Applied Polymer Science, 2013, 130, 3624-3633.	2.6	31
87	On the Thermal Stability of PS- <i>b</i> -PMMA Block and P(S- <i>r</i> -MMA) Random Copolymers for Nanopatterning Applications. Macromolecules, 2013, 46, 8224-8234.	4.8	43
88	Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. Macromolecular Bioscience, 2013, 13, 332-347.	4.1	25
89	Physical ageing reduction in PES through the incorporation of rigid non-interacting PTFE nanoparticles. Thermochimica Acta, 2013, 571, 53-59.	2.7	5
90	Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnology, 2013, 24, 315601.	2.6	72

#	Article	IF	CITATIONS
91	Biodistribution and Molecular Studies on Orally Administered Nanoparticle-AON Complexes Encapsulated with Alginate Aiming at Inducing Dystrophin Rescue in <i>mdx</i> Mice. BioMed Research International, 2013, 2013, 1-13.	1.9	21
92	Photoactive spherical colloids for opal photonic crystals. Polymer Composites, 2013, 34, 1443-1450.	4.6	7
93	Preparation and properties of PTFE/PAI nanocomposites. Polymer Composites, 2013, 34, 1451-1459.	4.6	9
94	POSS/gelatinâ€polyglutamic acid hydrogel composites: Preparation, biological and mechanical characterization. Journal of Applied Polymer Science, 2013, 129, 699-706.	2.6	27
95	Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2â€2OMePS AON and ZM2 NP-AON Complexes in mdx Mice. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	19
96	Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres. Journal of Nanomaterials, 2012, 2012, 1-15.	2.7	12
97	Preparation and Thermal Characterization of PTFE/PES Nanocomposites. Macromolecular Symposia, 2012, 311, 70-76.	0.7	9
98	Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation. Nanotechnology, 2012, 23, 485305.	2.6	33
99	Preparation, properties and self-assembly behavior of PTFE based core-shell nanospheres. AIP Conference Proceedings, 2012, , .	0.4	3
100	Sulfonates-PMMA nanoparticles conjugates: A versatile system for multimodal application. Bioorganic and Medicinal Chemistry, 2012, 20, 6640-6647.	3.0	14
101	Preparation and Properties of PTFE-PMMA Core-Shell Nanoparticles and Nanocomposites. Journal of Nanotechnology, 2012, 2012, 1-10.	3.4	4
102	Mesoporous silica membranes by self-assembled nanospheres and mediated laser ablation. , 2012, , .		0
103	Twoâ€dimensional nonâ€closeâ€packed arrays of nanoparticles via coreâ€shell nanospheres and reactive ion etching. Polymers for Advanced Technologies, 2012, 23, 558-564.	3.2	11
104	PTFE–PMMA core–shell colloidal particles as building blocks for selfâ€assembled opals: synthesis, properties and optical response. Polymer International, 2012, 61, 1294-1301.	3.1	32
105	Electrostatic Interaction of Negatively Charged Core–Shell Nanoparticles with Antitumoral Cationic Platinumâ€Based Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 3289-3294.	2.0	5
106	On the multiple crystallization behavior of PTFE in PMMA/PTFE nanocomposites from core–shell nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 548-554.	2.1	15
107	Thermal and DMA Characterization of PTFEâ€PMMA Nanocomposites from Coreâ€Shell Nanoparticles. Macromolecular Symposia, 2010, 296, 197-202.	0.7	7
108	PMMAâ€based coreâ€shell nanoparticles with various PTFE cores. Journal of Polymer Science Part A, 2009, 47. 2928-2937.	2.3	24

#	Article	IF	CITATIONS
109	Poly(methylmetacrylate) (PMMA) core–shell nanospheres act as efficient pharmacophores for the antiproliferative [PtCl3(NH3)]â~' complex by forming ionic couples. Inorganica Chimica Acta, 2009, 362, 4099-4109.	2.4	10
110	PTFE-Based Coreâ^'Soft Shell Nanospheres and Soft Matrix Nanocomposites. Macromolecules, 2009, 42, 3518-3524.	4.8	37
111	Cationic PMMA Nanoparticles Bind and Deliver Antisense Oligoribonucleotides Allowing Restoration of Dystrophin Expression in the mdx Mouse. Molecular Therapy, 2009, 17, 820-827.	8.2	70
112	Induction of humoral and enhanced cellular immune responses by novel core–shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine, 2009, 27, 3605-3615.	3.8	39
113	Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine, 2009, 27, 4498-4507.	3.8	10
114	Preparation and Characterization of Innovative Protein-coated Poly(Methylmethacrylate) Core-shell Nanoparticles for Vaccine Purposes. Pharmaceutical Research, 2007, 24, 1870-1882.	3.5	34
115	DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine, 2006, 24, 5655-5669.	3.8	46
116	Enhanced antisense effect of modified PNAs delivered through functional PMMA microspheres. International Journal of Pharmaceutics, 2006, 324, 83-91.	5.2	7
117	An ESR Approach to the Estimation of the Rate Constants of the Addition and Fragmentation Processes Involved in the RAFT Polymerization of Styrene. Helvetica Chimica Acta, 2006, 89, 2103-2118.	1.6	11
118	Comparison of novel delivery systems for antisense peptide nucleic acids. Journal of Controlled Release, 2005, 109, 24-36.	9.9	33
119	Biodegradable Polymers from Renewable Sources:Â Rheological Characterization of Hemicellulose-Based Hydrogels. Biomacromolecules, 2005, 6, 684-690.	5.4	93
120	Core–shell microspheres by dispersion polymerization as promising delivery systems for proteins. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1557-1574.	3.5	23
121	A Multidisciplinary Approach to the Use of Pyridinyl Dithioesters and Their N-Oxides as CTAs in the RAFT Polymerization of Styrene. Not the Chronicle of a Failure Foretold. Macromolecules, 2005, 38, 7610-7618.	4.8	26
122	Rheological Behavior of Azobenzene Nematic Homopolymer and Copolymer. Molecular Crystals and Liquid Crystals, 2005, 429, 301-312.	0.9	4
123	Thermomechanical behavior of poly(vinyl alcohol) and sugar cane bagasse composites. Journal of Applied Polymer Science, 2004, 92, 426-432.	2.6	28
124	Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 Tat protein for vaccine application. Vaccine, 2004, 22, 2910-2924.	3.8	39
125	A New Facile Synthesis of Tertiary Dithioesters ChemInform, 2003, 34, no.	0.0	0
126	Direct ESR Detection of Free Radicals in the RAFT Polymerization of Styrene. Macromolecules, 2003, 36, 736-740.	4.8	39

#	Article	IF	CITATIONS
127	Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. Vaccine, 2003, 21, 1103-1111.	3.8	27
128	PTFEâ^'Polystyrene Coreâ^'Shell Nanospheres and Nanocomposites. Macromolecules, 2003, 36, 4360-4367.	4.8	50
129	Polycaprolactoneâ^'Poly(ethylene glycol) Multiblock Copolymers as Potential Substitutes for Di(ethylhexyl) Phthalate in Flexible Poly(vinyl chloride) Formulations. Biomacromolecules, 2003, 4, 181-188.	5.4	58
130	Core–shell nanospheres for oligonucleotide delivery. V: Adsorption/release behavior of 'stealth' nanospheres. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1209-1227.	3.5	1
131	A New Facile Synthesis of Tertiary Dithioesters. Journal of Organic Chemistry, 2002, 67, 7911-7914.	3.2	34
132	Micellar-type complexes of tailor-made synthetic block copolymers containing the HIV-1 tat DNA for vaccine application. Vaccine, 2002, 20, 2303-2317.	3.8	28
133	Core–shell microspheres by dispersion polymerization as drug delivery systems. Macromolecular Chemistry and Physics, 2002, 203, 1364-1369.	2.2	33
134	Uniformly sized molecularly imprinted polymers (MIPs) for 17β-estradiol. Macromolecular Chemistry and Physics, 2002, 203, 1532-1538.	2.2	29
135	Fractionary couplings of spin probe to backbone and side group dynamics of a liquid crystal polymer. Macromolecular Chemistry and Physics, 2002, 203, 1636-1642.	2.2	5
136	Tailor-made core-shell nanospheres for antisense oligonucleotide delivery: IV.Adsorption/release behaviour. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1339-1357.	3.5	4
137	Complex associates of plasmid DNA and a novel class of block copolymers with PEG and cationic segments as new vectors for gene delivery. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 209-228.	3.5	19
138	Biphasic Behavior of a Thermotropic Polymesomorphic Polyester. 2. Temperature Evolution of Phase Separation. Macromolecules, 2001, 34, 7190-7196.	4.8	1
139	The effects of hydrogen bonding on the liquid crystalline behavior of semiflexible poly(urethaneester)s. Macromolecular Symposia, 1997, 117, 275-280.	0.7	3
140	Core-shell functional microspheres by dispersion polymerization: 2. Synthesis and characterization. Polymer, 1996, 37, 343-347.	3.8	23
141	Synthesis and liquid-crystalline properties of polyacrylates containing prochiral sulfide substituents. Polymer, 1995, 36, 1261-1268.	3.8	5
142	Thermal and dynamic-mechanical properties of new chiral smectic networks. Polymer Bulletin, 1994, 32, 669-674.	3.3	7
143	Immobilization and reactivity of enzymes on functional particles prepared by dispersion polymerization. Macromolecular Rapid Communications, 1994, 15, 909-915.	3.9	3
144	Semiflexible liquid-crystalline polyesters based on twin bis(p-oxybenzoyl) units. Part 1.—Effect of spacer length on mesomorphic behaviour. Journal of Materials Chemistry, 1994, 4, 429-435.	6.7	5

#	Article	IF	CITATIONS
145	Semiflexible liquid-crystalline polyesters based on twin bis(p-oxybenzoyl) units. Part 2.—Effect of molar mass on mesomorphic behaviour. Journal of Materials Chemistry, 1994, 4, 437-443.	6.7	6
146	X-ray diffraction study of the smectic mesophase of some azobenzene-containing polyacrylates. Liquid Crystals, 1993, 14, 981-990.	2.2	6
147	Semi-flexible liquid crystalline polyesters based on twin di(p-oxybenzoyl) units X-ray study on smectic mesophase structures. Liquid Crystals, 1993, 13, 353-363.	2.2	14
148	Semiflexible liquid-crystalline polyesters based on twin di(p-oxybenzoyl) units: synthesis and characterization. Journal of Materials Chemistry, 1992, 2, 449.	6.7	12
149	Molecular weight and molecular weight distribution effects on the liquid-crystalline and biphasic behavior of a thermotropic polyester. Macromolecules, 1992, 25, 5901-5906.	4.8	29
150	Thermal and X-Ray Investigation of a New Mesophasic Semiflexible Polyester. Molecular Crystals and Liquid Crystals, 1992, 215, 279-286.	0.3	5
151	Structural effects on the mesomorphic behaviour of thermotropic liquid crystal poly(ester) Tj ETQq1 1 0.784314	rgBT /Ove	rlgck 10 Tf
152	The observation of a novel biphase behavior in thermotropic side chain polymers. Die Makromolekulare Chemie Rapid Communications, 1991, 12, 43-49.	1.1	19
153	Title is missing!. Die Makromolekulare Chemie, 1990, 191, 147-154.	1.1	9
154	Title is missing!. Die Makromolekulare Chemie, 1990, 191, 2787-2793.	1.1	25
155	Mesomorphism — structure relationships in polyesters based on twin p-oxybenzoate mesogens. Die Makromolekulare Chemie, 1989, 190, 1655-1662.	1.1	11
156	Thermotropic poly(ester-?-sulfide)s. Polymer Bulletin, 1989, 21, 563.	3.3	6
157	Thermotropic liquid crystalline poly(ester β-sulfide)s based on twin hexamethylene-spaced (p-oxybenzoyl) diads. Macromolecules, 1989, 22, 1120-1124.	4.8	23
158	Liquid-crystalline poly(β-aminoester)s. Thermotropic mesomorphism and degradability in solution. Die Makromolekulare Chemie, 1988, 189, 743-754.	1.1	7
159	Synthesis and thermotropic properties of new mesogenic diacrylate monomers. Die Makromolekulare Chemie, 1986, 187, 289-296.	1.1	29
160	Poly(ethylene glycol) imidazolyl formates as oligomeric drug-binding matrices. Journal of Controlled Release, 1985, 1, 251-257.	9.9	14
161	Thermotropic liquid crystalline poly(β-thioester)s. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 587-593.	0.4	23