Emanuel M Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cork: properties, capabilities and applications. International Materials Reviews, 2005, 50, 345-365.	19.3	499
2	Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field. Progress in Polymer Science, 2013, 38, 1415-1441.	24.7	224
3	Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal. Chemical Engineering Journal, 2014, 253, 408-417.	12.7	121
4	Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures, 2013, 105, 153-162.	5.8	104
5	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	7.8	86
6	Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomaterialia, 2019, 99, 236-246.	8.3	72
7	New biotextiles for tissue engineering: Development, characterization and in vitro cellular viability. Acta Biomaterialia, 2013, 9, 8167-8181.	8.3	65
8	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	3.3	60
9	Cork based composites using polyolefin's as matrix: Morphology and mechanical performance. Composites Science and Technology, 2010, 70, 2310-2318.	7.8	59
10	Properties of new cork–polymer composites: Advantages and drawbacks as compared with commercially available fibreboard materials. Composite Structures, 2011, 93, 3120-3120.	5.8	54
11	Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380.	12.0	53
12	Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, 16, 269.	4.6	51
13	Cork–polymer biocomposites: Mechanical, structural and thermal properties. Materials and Design, 2015, 82, 282-289.	7.0	50
14	Polypropylene-based cork–polymer composites: Processing parameters and properties. Composites Part B: Engineering, 2014, 66, 210-223.	12.0	46
15	Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomaterials Science, 2020, 8, 2577-2589.	5.4	38
16	Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Materials Science and Engineering C, 2021, 122, 111928.	7.3	32
17	Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(<i>Îμ</i> -caprolactone) scaffolds. Biofabrication, 2017, 9, 025015.	7.1	30
18	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	3.8	27

Emanuel M Fernandes

#	Article	IF	CITATIONS
19	Cork: properties, capabilities and applications. International Materials Reviews, 2008, 53, 256-256.	19.3	19
20	Cork extractives exhibit thermo-oxidative protection properties in polypropylene–cork composites and as direct additives for polypropylene. Polymer Degradation and Stability, 2015, 116, 45-52.	5.8	18
21	Gradual pore formation in natural origin scaffolds throughout subcutaneous implantation. Journal of Biomedical Materials Research - Part A, 2012, 100A, 599-612.	4.0	17
22	Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context. Marine Environmental Research, 2019, 150, 104757.	2.5	15
23	Manufacturing and Characterization of Coatings from Polyamide Powders Functionalized with Nanosilica. Polymers, 2020, 12, 2298.	4.5	15
24	Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.	5.0	12
25	Development and characterisation of cytocompatible polyester substrates with tunable mechanical properties and degradation rate. Acta Biomaterialia, 2021, 121, 303-315.	8.3	12
26	Silk fibroin/cholinium gallate-based architectures as therapeutic tools. Acta Biomaterialia, 2022, 147, 168-184.	8.3	11
27	Approach on chitosan/virgin coconut oil-based emulsion matrices as a platform to design superabsorbent materials. Carbohydrate Polymers, 2020, 249, 116839.	10.2	9
28	Fundamentals on biopolymers and global demand. , 2020, , 3-34.		9
29	Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	3.3	7
30	Tailoring Natural-Based Oleogels Combining Ethylcellulose and Virgin Coconut Oil. Polymers, 2022, 14, 2473.	4.5	6
31	Cork biomass biocomposites. , 2017, , 365-385.		4
32	Bovine Colostrum Supplementation Improves Bone Metabolism in an Osteoporosis-Induced Animal Model. Nutrients, 2021, 13, 2981.	4.1	4
33	Modulation of stem cell response using biodegradable polyester films with different stiffness. Biomedical Engineering Advances, 2021, 2, 100007.	3.8	4
34	Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydrate Polymers, 2021, 257, 117601.	10.2	3
35	Natural Fibres as Reinforcement Strategy on Cork-Polymer Composites. Materials Science Forum, 2012, 730-732, 373-378.	0.3	2

Biopolymer membranes in tissue engineering. , 2020, , 141-163.

0

#	Article	IF	CITATIONS
37	Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients, 2022, 14, 2837.	4.1	2

38Characterisation of eumelanin-chitosan films. Acta Horticulturae, 2018, , 219-224.0.2