
Subratanath Koner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	2.8	6
2	2D paddle wheel lanthanide metal-organic framework: Synthesis, structure and exploration of catalytic N-arylation reaction. Polyhedron, 2022, 219, 115789.	2.2	1
3	Aerobic epoxidation of olefins by carboxylate ligandâ€based cobalt (II) compound: synthesis, Xâ€ray crystallography, and catalytic exploration. Applied Organometallic Chemistry, 2022, 36, .	3.5	1
4	A trinuclear Zn(<scp>ii</scp>) Schiff base azido compound: synthesis, structure and exploration of antimicrobial activity. New Journal of Chemistry, 2021, 45, 12296-12304.	2.8	4
5	A post-synthetically modified metal–organic framework for copper catalyzed denitrative C–N coupling of nitroarenes under heterogeneous conditions. New Journal of Chemistry, 2021, 45, 5568-5575.	2.8	8
6	Thermally stable and robust gadolinium-based metal-organic framework: Synthesis, structure and heterogeneous catalytic O-arylation reaction. Polyhedron, 2021, 194, 114934.	2.2	2
7	Solvent mediated photoluminescence responses over mixed-linker cadmium (II) based metal–organic frameworks. Polyhedron, 2021, 208, 115444.	2.2	1
8	Combined experimental and computational studies on preferential CO ₂ adsorption over a zinc-based porous framework solid. New Journal of Chemistry, 2020, 44, 1806-1816.	2.8	4
9	Heterometallic Metal–Organic Frameworks That Catalyze Two Different Reactions Sequentially. Inorganic Chemistry, 2016, 55, 5729-5731.	4.0	30
10	Heterogeneous O-arylation of nitroarenes with substituted phenols over a copper immobilized mesoporous silica catalyst. RSC Advances, 2016, 6, 33380-33386.	3.6	14
11	Heterogeneous sequential N-arylation of N-heterocycles over copper anchored mesoporous silica catalyst. Applied Catalysis A: General, 2016, 513, 53-66.	4.3	18
12	Metal–Organic Frameworks Based on Alkaline Earth Metals – Hydrothermal Synthesis, Xâ€ r ay Structures, Gas Adsorption, and Heterogeneously Catalyzed Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2015, 2015, 1053-1064.	2.0	25
13	pHâ€īuned Modulation of 1D Chain to 3D Metal–Organic Framework: Synthesis, Structure and Their Useful Application in the Heterogeneous Claisen–Schmidt Reaction. ChemPlusChem, 2015, 80, 591-598.	2.8	13
14	A family of ligand and anion dependent structurally diverse Cu(<scp>ii</scp>) Schiff-base complexes and their catalytic efficacy in an <i>O</i> -arylation reaction in ethanolic media. RSC Advances, 2015, 5, 82179-82191.	3.6	22
15	Synthesis of symmetrically functionalized oligo(p-phenylenevinylene) by Pd-catalyzed Heck coupling reaction. Research on Chemical Intermediates, 2015, 41, 4825-4832.	2.7	1
16	Ligand free copper-catalyzed heterogeneous O-arylation reaction under green condition. Catalysis Communications, 2015, 58, 141-148.	3.3	12
17	Alkaline earth metal-based metal–organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen–Schmidt reaction. Dalton Transactions, 2014, 43, 13006-13017.	3.3	41
18	Aromatic Nâ€Arylations Catalyzed by Copperâ€Anchored Porous Zincâ€Based Metal–Organic Framework under Heterogeneous Conditions, ChemCatChem, 2014, 6, 2373-2383.	3.7	43

Subratanath Koner

#	Article	IF	CITATIONS
19	Catalytic olefin epoxidation over cobalt(<scp>ii</scp>)-containing mesoporous silica by molecular oxygen in dimethylformamide medium. Catalysis Science and Technology, 2014, 4, 1820-1828.	4.1	33
20	Suzuki cross-coupling reaction over Pd-Schiff-base anchored mesoporous silica catalyst. Journal of Molecular Catalysis A, 2014, 394, 188-197.	4.8	42
21	A magnesium-based multifunctional metal–organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Transactions, 2013, 42, 13912.	3.3	47
22	Anchoring of Palladium onto Surface of Porous Metal–Organic Framework through Post-Synthesis Modification and Studies on Suzuki and Stille Coupling Reactions under Heterogeneous Condition. Langmuir, 2013, 29, 3140-3151.	3.5	95
23	Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 2012, 43, 63-70.	2.2	38
24	Barium Carboxylate Metal-Organic Framework - Synthesis, X-ray Crystal Structure, Photoluminescence and Catalytic Study. European Journal of Inorganic Chemistry, 2012, 2012, 4914-4920.	2.0	43
25	Porous magnesium carboxylate framework: synthesis, X-ray crystal structure, gas adsorption property and heterogeneous catalytic aldol condensation reaction. Dalton Transactions, 2012, 41, 7399.	3.3	56
26	One-dimensional chain copper(II) complex: Synthesis, X-ray crystal structure and catalytic activity in the epoxidation of styrene. Polyhedron, 2012, 35, 55-61.	2.2	33
27	Lanthanide Carboxylate Frameworks: Efficient Heterogeneous Catalytic System for Epoxidation of Olefins. Catalysis Letters, 2012, 142, 124-130.	2.6	31
28	Synthesis, X-ray Crystal Structure and Magnetic Study of a μ1,5-dca Bridged Dimeric Copper(II) Complex. Journal of Chemical Crystallography, 2011, 41, 1018-1022.	1.1	2
29	Functionalization of oxo-vanadium(IV) acetylacetonate over modified MCM-41: an efficient reusable catalyst for epoxidation reaction. Journal of Porous Materials, 2011, 18, 399-407.	2.6	14
30	Heterogeneous Catalytic Epoxidation of Olefins Over Hydrothermally Synthesized Lanthanide Containing Framework Compounds. European Journal of Inorganic Chemistry, 2011, 2011, 241-248.	2.0	44
31	Gd ₂₆ Cluster Consisting of Distorted Cubane Cores: Synthesis, Structure and Heterogeneous Catalytic Epoxidation of Olefins. European Journal of Inorganic Chemistry, 2011, 2011, 2826-2831.	2.0	41
32	Hydrothermal synthesis of dimeric lanthanide compounds: X-ray structure, magnetic study and heterogeneous catalytic epoxidation of olefins. Polyhedron, 2010, 29, 3183-3191.	2.2	43
33	Iron-Containing Mesoporous Aluminosilicate: A Highly Active and Reusable Heterogeneous Catalyst for Hydroarylation of Styrenes. Journal of Organic Chemistry, 2010, 75, 6005-6008.	3.2	28
34	Efficient Energy Transfer between Confined Dye and Y-Zeolite Functionalized Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 19667-19672.	3.1	25
35	Heterogeneous Suzuki and Stille coupling reactions using highly efficient palladium(0) immobilized MCM-41 catalyst. Tetrahedron Letters, 2009, 50, 4820-4823.	1.4	79
36	Layered Transition Metal Carboxylates: Efficient Reusable Heterogeneous Catalyst for Epoxidation of Olefins. Langmuir, 2009, 25, 13667-13672.	3.5	41

Subratanath Koner

#	Article	IF	CITATIONS
37	Tridentate (NNO) Schiff-base copper(II) complex: synthesis, crystal structure, and magnetic study. Journal of Coordination Chemistry, 2009, 62, 3573-3582.	2.2	44
38	Immobilization of Palladium in Mesoporous Silica Matrix: Preparation, Characterization, and Its Catalytic Efficacy in Carbonâ^'Carbon Coupling Reactions. Inorganic Chemistry, 2008, 47, 5512-5520.	4.0	115
39	Synthesis, X-ray crystal structure and magnetic study of a μ 1,5-dca bridged ferromagnetic dimeric copper(II) complex. Journal of Coordination Chemistry, 2008, 61, 3486-3492.	2.2	8
40	Synthesis, characterisation and X-ray structure of an azido adduct of a tridentate (NNO) Schiff base nickel(II) complex. Journal of Coordination Chemistry, 2006, 59, 699-704.	2.2	6
41	Unprecedented Low Cuâ^'N(azide)â^'Cu Angles in End-On Double Azido Bridged Copper(II) Complex. Inorganic Chemistry, 2004, 43, 840-842.	4.0	156
42	A Novel Tetranuclear Copper(II) Complex with Alternating μ1,1-Azido and Phenoxo Bridges:  Synthesis, Structure, and Magnetic Properties of [Cu4(μ-salen)2(μ1,1-N3)2(N3)2]. Inorganic Chemistry, 2003, 42, 4668-4672.	4.0	102
43	μ-Azido- and μ-Oxo-Complexes of Fe(III) with Schiff Bases. Journal of Coordination Chemistry, 2003, 56, 103-111.	2.2	24
44	Immobilization of Cr(salen) moiety in MCM-41 and studies on its catalytic properties. Journal of Molecular Catalysis A, 1999, 150, 295-297.	4.8	28
45	Novel color isomerism and catalytic activities of Cu(salen) complex encapsulated in a zeolitic matrix. Chemical Communications, 1998, , 593-594.	4.1	60