Matthew Fickus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4452213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finite Normalized Tight Frames. Advances in Computational Mathematics, 2003, 18, 357-385.	1.6	283
2	Steiner equiangular tight frames. Linear Algebra and Its Applications, 2012, 436, 1014-1027.	0.9	159
3	Phase Retrieval with Polarization. SIAM Journal on Imaging Sciences, 2014, 7, 35-66.	2.2	93
4	The Road to Deterministic Matrices with the Restricted Isometry Property. Journal of Fourier Analysis and Applications, 2013, 19, 1123-1149.	1.0	90
5	Constructing tight fusion frames. Applied and Computational Harmonic Analysis, 2011, 30, 175-187.	2.2	71
6	Equiangular Tight Frames From Hyperovals. IEEE Transactions on Information Theory, 2016, 62, 5225-5236.	2.4	52
7	Phase retrieval from very few measurements. Linear Algebra and Its Applications, 2014, 449, 475-499.	0.9	42
8	Kirkman Equiangular Tight Frames and Codes. IEEE Transactions on Information Theory, 2014, 60, 170-181.	2.4	40
9	Auto-tuning unit norm frames. Applied and Computational Harmonic Analysis, 2012, 32, 1-15.	2.2	36
10	Constructing finite frames of a given spectrum and set of lengths. Applied and Computational Harmonic Analysis, 2013, 35, 52-73.	2.2	36
11	Minimizing Fusion Frame Potential. Acta Applicandae Mathematicae, 2009, 107, 7-24.	1.0	33
12	Tremain equiangular tight frames. Journal of Combinatorial Theory - Series A, 2018, 153, 54-66.	0.8	28
13	Steiner equiangular tight frames redux. , 2015, , .		27
14	Fingerprinting With Equiangular Tight Frames. IEEE Transactions on Information Theory, 2013, 59, 1855-1865.	2.4	25
15	Numerically erasure-robust frames. Linear Algebra and Its Applications, 2012, 437, 1394-1407.	0.9	23
16	Convolutional frames and the frame potential. Applied and Computational Harmonic Analysis, 2005, 19, 77-91.	2.2	22
17	Spectral Tetris Fusion Frame Constructions. Journal of Fourier Analysis and Applications, 2012, 18, 828-851.	1.0	20
18	Equiangular tight frames that contain regular simplices. Linear Algebra and Its Applications, 2018, 555, 98-138.	0.9	18

MATTHEW FICKUS

4

#	Article	IF	CITATIONS
19	Every Hilbert space frame has a Naimark complement. Journal of Mathematical Analysis and Applications, 2013, 406, 111-119.	1.0	17
20	Constructing all self-adjoint matrices with prescribed spectrum and diagonal. Advances in Computational Mathematics, 2013, 39, 585-609.	1.6	15
21	Equiangular tight frames with centroidal symmetry. Applied and Computational Harmonic Analysis, 2018, 44, 476-496.	2.2	13
22	Packings in Real Projective Spaces. SIAM Journal on Applied Algebra and Geometry, 2018, 2, 377-409.	1.4	12
23	Maximally Equiangular Frames and Gauss Sums. Journal of Fourier Analysis and Applications, 2009, 15, 413-427.	1.0	11
24	Polyphase equiangular tight frames and abelian generalized quadrangles. Applied and Computational Harmonic Analysis, 2019, 47, 628-661.	2.2	11
25	Active mask segmentation for the cell-volume computation and Golgi-body segmentation of hela cell images. , 2008, , .		10
26	Frame completions for optimally robust reconstruction. Proceedings of SPIE, 2011, , .	0.8	10
27	Fast computation of spectral centroids. Advances in Computational Mathematics, 2011, 35, 83-97.	1.6	10
28	Local histograms and image occlusion models. Applied and Computational Harmonic Analysis, 2013, 34, 469-487.	2.2	8
29	Derandomizing Restricted Isometries via the Legendre Symbol. Constructive Approximation, 2016, 43, 409-424.	3.0	7
30	A generalized Schur–Horn theorem and optimal frame completions. Applied and Computational Harmonic Analysis, 2016, 40, 505-528.	2.2	7
31	Mutually Unbiased Equiangular Tight Frames. IEEE Transactions on Information Theory, 2021, 67, 1656-1667.	2.4	7
32	Compressive Hyperspectral Imaging for Stellar Spectroscopy. IEEE Signal Processing Letters, 2015, 22, 1829-1833.	3.6	6
33	Harmonic equiangular tight frames comprised of regular simplices. Linear Algebra and Its Applications, 2020, 586, 130-169.	0.9	6
34	Hadamard equiangular tight frames. Applied and Computational Harmonic Analysis, 2021, 50, 281-302.	2.2	5
35	Isotropic moments over integer lattices. Applied and Computational Harmonic Analysis, 2009, 26, 77-96.	2.2	4

Projection retrieval: Theory and algorithms. , 2015, , .

MATTHEW FICKUS

#	Article	IF	CITATIONS
37	Group-theoretic constructions of erasure-robust frames. Linear Algebra and Its Applications, 2015, 479, 131-154.	0.9	4
38	Equiangular tight frames from group divisible designs. Designs, Codes, and Cryptography, 2019, 87, 1673-1697.	1.6	4
39	Guaranteeing convergence of iterative skewed voting algorithms for image segmentation. Applied and Computational Harmonic Analysis, 2012, 33, 300-308.	2.2	2
40	A vocabulary for the identification and delineation of teratoma tissue components in hematoxylin and eosin-stained samples. Journal of Pathology Informatics, 2014, 5, 19.	1.7	2
41	Determining angular frequency from images of rotating objects via a generalized fast Fourier transform. Advances in Computational Mathematics, 2014, 40, 27-47.	1.6	1
42	Grassmannian codes from paired difference sets. Designs, Codes, and Cryptography, 2021, 89, 2553.	1.6	1
43	Classifying compact convex sets with frames. Applied and Computational Harmonic Analysis, 2009, 27, 73-86.	2.2	0
44	Frame domain signal processing: Framework and applications. , 2010, , .		0
45	Optimal Frames and Newton's Method. Numerical Functional Analysis and Optimization, 2012, 33, 971-988.	1.4	0
46	Equi-isoclinic subspaces from difference sets. , 2019, , .		0
47	A vocabulary for the identification and delineation of teratoma tissue components in hematoxylin and eosin-stained samples. Journal of Pathology Informatics, 2014, 5, 19.	0.6	0