Siowling Soh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451998/publications.pdf

Version: 2024-02-01

361413 395702 1,582 34 20 33 citations h-index g-index papers 35 35 35 2397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-Assembly of Graphene Oxide Flakes for Smart and Multifunctional Coating with Reversible Formation of Wrinkling Patterns. Soft Matter, 2022, , .	2.7	O
2	Stimuli-responsive attachment for enabling the targeted release of carriers. Materials Chemistry Frontiers, 2021, 5, 4317-4326.	5.9	3
3	Performing calculus: Asymmetric adaptive stimuli-responsive material for derivative control. Science Advances, 2021, 7, .	10.3	6
4	Nonconductive Noncharging Composites: Tunable and Stretchable Materials for Adaptive Prevention of Charging by Contact Electrification. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5274-5285.	8.0	5
5	Charging Organic Liquids by Static Charge. Journal of the American Chemical Society, 2020, 142, 21004-21016.	13.7	8
6	Selective Reduction Sites on Commercial Graphite Foil for Building Multimetallic Nanoâ€Assemblies for Energy Conversion. ChemistrySelect, 2020, 5, 13269-13277.	1.5	0
7	The Relationship between Static Charge and Shape. ACS Central Science, 2020, 6, 704-714.	11.3	14
8	Eco-Friendly, Direct Deposition of Metal Nanoparticles on Graphite for Electrochemical Energy Conversion and Storage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36525-36534.	8.0	23
9	Soft stimuli-responsive grippers and machines with high load-to-weight ratios. Materials Horizons, 2019, 6, 160-168.	12.2	24
10	The Pathway to Intelligence: Using Stimuliâ€Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Advanced Materials, 2019, 31, e1804540.	21.0	169
11	Rationalizing the Triboelectric Series of Polymers. Chemistry of Materials, 2019, 31, 1473-1478.	6.7	80
12	Graphiteâ€Aligned Ni/Ni(OH) ₂ Nanowireâ€Based Aqueous Asymmetric Supercapacitors Exhibiting Excellent Cycle Stability, High Rate Performance, and Wide Operation Voltage. ChemistrySelect, 2019, 4, 13543-13550.	1.5	4
13	Signal Amplification: A Sharp Impermeableâ€Permeable Transition for Highly Sensitive Lowâ€Cost Detection. Advanced Materials Technologies, 2018, 3, 1800042.	5.8	2
14	Drug delivery systems for programmed and on-demand release. Advanced Drug Delivery Reviews, 2018, 132, 104-138.	13.7	229
15	Correlating Material Transfer and Charge Transfer in Contact Electrification. Journal of Physical Chemistry C, 2018, 122, 16154-16160.	3.1	54
16	Anomalous Charging Behavior of Inorganic Materials. Journal of Physical Chemistry C, 2018, 122, 11414-11421.	3.1	16
17	Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications. Advanced Materials, 2018, 30, e1802405.	21.0	117
18	Performing Logical Operations with Stimuliâ€Responsive Building Blocks. Advanced Materials, 2017, 29, 1606483.	21.0	23

#	Article	IF	CITATIONS
19	Metal Nanowire-Based Hybrid Electrodes Exhibiting High Charge/Discharge Rates and Long-Lived Electrocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 36350-36357.	8.0	8
20	Universal Nature-Inspired Coatings for Preparing Noncharging Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32220-32226.	8.0	25
21	Reversible and Continuously Tunable Control of Charge of Close Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 6142-6147.	4.6	9
22	Solidâ€toâ€Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angewandte Chemie, 2016, 128, 10110-10114.	2.0	5
23	Solidâ€toâ€Liquid Charge Transfer for Generating Droplets with Tunable Charge. Angewandte Chemie - International Edition, 2016, 55, 9956-9960.	13.8	31
24	Designing Non-charging Surfaces from Non-conductive Polymers. Advanced Materials, 2016, 28, 3024-3029.	21.0	35
25	High-Sensitivity Measurement of Density by Magnetic Levitation. Analytical Chemistry, 2016, 88, 2666-2674.	6.5	60
26	Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability. Journal of the American Chemical Society, 2016, 138, 1252-1257.	13.7	52
27	Stimuliâ€Responsive Surfaces for Tunable and Reversible Control of Wettability. Advanced Materials, 2015, 27, 4062-4068.	21.0	119
28	Printing Tablets with Fully Customizable Release Profiles for Personalized Medicine. Advanced Materials, 2015, 27, 7847-7853.	21.0	116
29	Using the gravitational energy of water to generate power by separation of charge at interfaces. Chemical Science, 2015, 6, 3347-3353.	7.4	64
30	Charging of Multiple Interacting Particles by Contact Electrification. Journal of the American Chemical Society, 2014, 136, 13348-13354.	13.7	28
31	Layer-by-layer films for tunable and rewritable control of contact electrification. Soft Matter, 2013, 9, 10233.	2.7	15
32	Contact De-electrification of Electrostatically Charged Polymers. Journal of the American Chemical Society, 2012, 134, 20151-20159.	13.7	72
33	Dynamic internal gradients control and direct electric currents within nanostructured materials. Nature Nanotechnology, 2011, 6, 740-746.	31.5	48
34	Is Water Necessary for Contact Electrification?. Angewandte Chemie - International Edition, 2011, 50, 6766-6770.	13.8	101