Guillaume Gomard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451748/publications.pdf

Version: 2024-02-01

44 papers

996 citations 19 h-index 30 g-index

44 all docs 44 docs citations

times ranked

44

1460 citing authors

#	Article	IF	CITATIONS
1	High Dynamic Range Smart Window Display by Surface Hydrophilization and Inkjet Printing. Advanced Materials Technologies, 2022, 7, 2101026.	5.8	3
2	Nanoporous Polymer Reflectors for Organic Solar Cells. Energy Technology, 2022, 10, 2100676.	3.8	5
3	A Selfâ€Assembly Method for Tunable and Scalable Nanoâ€Stamps: A Versatile Approach for Imprinting Nanostructures. Advanced Materials Technologies, 2022, 7, 2101008.	5.8	5
4	Silver-Nanoparticle-Based Metallodielectric Wavelength-Selective Reflectors for Quantum-Dot-Enhanced White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 87-93.	5.0	2
5	A Singleâ€Step Hot Embossing Process for Integration of Microlens Arrays in Biodegradable Substrates for Improved Light Extraction of Lightâ€Emitting Devices. Advanced Materials Technologies, 2021, 6, 1900933.	5.8	23
6	Planarized and Compact Light Scattering Layers Based on Disordered Titania Nanopillars for Light Extraction in Organic Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2001610.	7.3	9
7	Gold nanoplasmonic particles in tunable porous silicon 3D scaffolds for ultra-low concentration detection by SERS. Nanoscale Horizons, 2021, 6, 781-790.	8.0	23
8	Snakeâ€Inspired, Nanoâ€Stepped Surface with Tunable Frictional Anisotropy Made from a Shapeâ€Memory Polymer for Unidirectional Transport of Microparticles. Advanced Functional Materials, 2021, 31, 2009611.	14.9	7
9	Phase-Separated Nanophotonic Structures by Inkjet Printing. ACS Nano, 2021, 15, 7305-7317.	14.6	14
10	Simulation of light scattering in large, disordered nanostructures using a periodic T-matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107802.	2.3	14
11	Design of Selective Reflectors Utilizing Multiple Scattering by Core–Shell Nanoparticles for Color Conversion Films. ACS Photonics, 2020, 7, 1452-1460.	6.6	7
12	Upscaling the fabrication routine of bioreplicated rose petal light harvesting layers for photovoltaic modules. Solar Energy, 2020, 201, 666-673.	6.1	12
13	Highly Efficient and Waterâ€Stable Lead Halide Perovskite Quantum Dots Using Superhydrophobic Aerogel Inorganic Matrix for White Lightâ€Emitting Diodes. Advanced Materials Technologies, 2020, 5, 1900941.	5.8	42
14	Compensated Microsphere-Assisted Interference Microscopy. Physical Review Applied, 2020, 13, .	3.8	24
15	Horsefly reactions to black surfaces: attractiveness to male and female tabanids versus surface tilt angle and temperature. Parasitology Research, 2020, 119, 2399-2409.	1.6	5
16	Nanostructured front electrodes for perovskite/c-Si tandem photovoltaics. Optics Express, 2020, 28, 8878.	3.4	8
17	Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects. PLoS ONE, 2020, 15, e0243296.	2.5	5
18	Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL Photonics, 2019, 4, 076104.	5.7	21

#	Article	IF	Citations
19	Enhanced Photoluminescence in Quantum Dots–Porous Polymer Hybrid Films Fabricated by Microcellular Foaming. Advanced Optical Materials, 2019, 7, 1900223.	7.3	39
20	Enhanced color conversion of quantum dots - polymer hybrid films in light emitting diodes. , 2019, , .		0
21	Nanophotonic perovskite layers for enhanced current generation and mitigation of lead in perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 65-71.	6.2	50
22	Microlens arrays with adjustable aspect ratio fabricated by electrowetting and their application to correlated color temperature tunable light-emitting diodes. Optics Express, 2019, 27, A25.	3.4	12
23	Light trapping in thin film silicon solar cells <i>via</i> phase separated disordered nanopillars. Nanoscale, 2018, 10, 6651-6659.	5.6	23
24	Self-Cleaning Microcavity Array for Photovoltaic Modules. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2929-2936.	8.0	17
25	Characterization of the microscopic tribological properties of sandfish (<i>Scincus scincus</i>) scales by atomic force microscopy. Beilstein Journal of Nanotechnology, 2018, 9, 2618-2627.	2.8	15
26	Disordered diffraction gratings tailored by shape-memory based wrinkling and their application to photovoltaics. Optical Materials Express, 2018, 8, 184.	3.0	24
27	Cloaking of metal grid electrodes on Lambertian emitters by free-form refractive surfaces. Optics Letters, 2018, 43, 527.	3.3	7
28	Rigorous wave-optical treatment of photon recycling in thermodynamics of photovoltaics: Perovskite thin-film solar cells. Physical Review B, 2018, 98, .	3.2	31
29	Large-Area Screen-Printed Internal Extraction Layers for Organic Light-Emitting Diodes. ACS Photonics, 2017, 4, 928-933.	6.6	43
30	Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces. Scientific Reports, 2017, 7, 46637.	3.3	52
31	Assessing the influence of structural disorder on the plant epidermal cells' optical properties: a numerical analysis. Bioinspiration and Biomimetics, 2017, 12, 036011.	2.9	12
32	Texture of the Viola Flower for Light Harvesting in Photovoltaics. ACS Photonics, 2017, 4, 2687-2692.	6.6	43
33	Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Science Advances, 2017, 3, e1700232.	10.3	98
34	Extending the applicability of the T-matrix method to light scattering by flat particles on a substrate via truncation of sommerfeld integrals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 202, 279-285.	2.3	23
35	Light scattering by oblate particles near planar interfaces: on the validity of the T-matrix approach. Optics Express, 2016, 24, 25154.	3.4	20
36	Flower Power: Exploiting Plants' Epidermal Structures for Enhanced Light Harvesting in Thinâ€Film Solar Cells. Advanced Optical Materials, 2016, 4, 1487-1493.	7.3	54

#	Article	IF	CITATIONS
37	Development and characterization of high refractive index and high scattering acrylate polymer layers. Optical Engineering, 2016, 55, 117106.	1.0	2
38	Bioinspired Superhydrophobic Highly Transmissive Films for Optical Applications. Small, 2016, 12, 6144-6152.	10.0	54
39	Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer–Nanoparticle Composite Layers. ACS Applied Materials & Empty Interfaces, 2016, 8, 2666-2672.	8.0	8
40	Single-pass and omniangle light extraction from light-emitting diodes using transformation optics. Optics Letters, 2015, 40, 5626.	3.3	2
41	Influence of the Emission Layer Thickness on the Optoelectronic Properties of Solution Processed Organic Light-Emitting Diodes. ACS Photonics, 2014, 1, 968-973.	6.6	45
42	Modal approach for tailoring the absorption in a photonic crystal membrane. Journal of Applied Physics, 2012, 111, .	2.5	16
43	Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1 \$muhbox{m}\$ Wavelength. IEEE Photonics Journal, 2011, 3, 1142-1148.	2.0	8
44	Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. Journal of Applied Physics, 2010, 108, .	2.5	69