

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/445164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the instability criterion of vehicles in urban flooding by an entropic method. Urban Climate, 2022, 41, 101069.	2.4	3
2	Landslide susceptibility modeling based on remote sensing data and data mining techniques. Environmental Earth Sciences, 2022, 81, 1.	1.3	12
3	A comparison study on the quantitative statistical methods for spatial prediction of shallow landslides (case study: Yozidar-Degaga Route in Kurdistan Province, Iran). Environmental Earth Sciences, 2022, 81, 1.	1.3	12
4	Predicting sustainable arsenic mitigation using machine learning techniques. Ecotoxicology and Environmental Safety, 2022, 232, 113271.	2.9	12
5	A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 102713.	1.4	37
6	A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Sensors, 2022, 22, 1573.	2.1	31
7	Towards robust smart data-driven soil erodibility index prediction under different scenarios. Geocarto International, 2022, 37, 13176-13209.	1.7	1
8	Efficiency of artificial neural networks in determining scour depth at composite bridge piers. International Journal of River Basin Management, 2021, 19, 327-333.	1.5	5
9	Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?. Journal of Hydrology, 2021, 592, 125615.	2.3	65
10	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	4.3	95
11	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	4.3	60
12	Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sensing, 2021, 13, 1349.	1.8	61
13	Unraveling the drivers of intensified landslide regimes in Western Chats, India. Science of the Total Environment, 2021, 770, 145357.	3.9	28
14	Multi-agent coverage control for enhanced geohazard monitoring: a brief review. Control Theory and Technology, 2021, 19, 418-420.	1.0	7
15	An Extended Entropic Model for Cohesive Sediment Flocculation in a Piecewise Varied Shear Environment. Entropy, 2021, 23, 1263.	1.1	2
16	A Comparative Study of Deep Learning and Conventional Neural Network for Evaluating Landslide Susceptibility Using Landslide Initiation Zones. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 215-223.	0.3	4
17	GIS-Based Three-Dimensional SPH Simulation for the 11 April 2018 Yabakei Landslide at Oita Nakatsu, Japan. Water (Switzerland), 2021, 13, 3012.	1.2	6
18	Habitat Suitability Mapping of Sloth Bear (Melursus ursinus) in the Sariska Tiger Reserve (India) Using		5

#	Article	IF	CITATIONS
19	A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 2020, 35, 1267-1292.	1.7	114
20	Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 2020, 17, 641-658.	2.7	294
21	Performance assessment of GNSS scalar and vector frequency tracking loops. Optik, 2020, 202, 163552.	1.4	6
22	Decadal vegetation succession from MODIS reveals the spatio-temporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake. Remote Sensing of Environment, 2020, 236, 111476.	4.6	83
23	Assessing sustainable development prospects through remote sensing: A review. Remote Sensing Applications: Society and Environment, 2020, 20, 100402.	0.8	32
24	Variation in Rayleigh wave ellipticity as a possible indicator of earthflow mobility: a case study of Sobradinho landslide compared with pile load testing. Earth Sciences Research Journal, 2020, 24, 141-151.	0.4	4
25	Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 2020, 11, 830.	0.9	57
26	Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, 2020, 104, 1259-1294.	1.6	76
27	Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. IEEE Access, 2020, 8, 145968-145983.	2.6	50
28	Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 2020, 17, 4933.	1.2	84
29	Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena, 2020, 195, 104805.	2.2	90
30	Assessing subsidence susceptibility to coal mining using frequency ratio, statistical index and Mamdani fuzzy models: evidence from Raniganj coalfield, India. Environmental Earth Sciences, 2020, 79, 1.	1.3	10
31	Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method. Water Research, 2020, 182, 116031.	5.3	27
32	Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms. ISPRS International Journal of Geo-Information, 2020, 9, 479.	1.4	42
33	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	4.3	29
34	The Potential Use of Geophysical Methods to Identify Cavities, Sinkholes and Pathways for Water Infiltration. Water (Switzerland), 2020, 12, 2289.	1.2	30
35	Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Applied Sciences (Switzerland), 2020, 10, 5047.	1.3	50
36	GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. Remote Sensing, 2020, 12, 2478.	1.8	92

#	Article	IF	CITATIONS
37	An entropic model for the rock water absorption process. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1871-1886.	1.9	5
38	A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sensing, 2020, 12, 2688.	1.8	46
39	Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides. ISPRS International Journal of Geo-Information, 2020, 9, 696.	1.4	14
40	Did the COVID-19 Lockdown-Induced Hydrological Residence Time Intensify the Primary Productivity in Lakes? Observational Results Based on Satellite Remote Sensing. Water (Switzerland), 2020, 12, 2573.	1.2	18
41	Detection of Cover Collapse Doline and Other Epikarst Features by Multiple Geophysical Techniques, Case Study of Tarimba Cave, Brazil. Water (Switzerland), 2020, 12, 2835.	1.2	8
42	Google Earth Engine for the Detection of Soiling on Photovoltaic Solar Panels in Arid Environments. Remote Sensing, 2020, 12, 1466.	1.8	24
43	Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 2020, 207, 103225.	4.0	470
44	Monitoring and Assessment of Water Level Fluctuations of the Lake Urmia and Its Environmental Consequences Using Multitemporal Landsat 7 ETM+ Images. International Journal of Environmental Research and Public Health, 2020, 17, 4210.	1.2	37
45	Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Scientific Reports, 2020, 10, 9939.	1.6	77
46	Evaluating Different Methods for Determining the Velocity-Dip Position over the Entire Cross Section and at the Centerline of a Rectangular Open Channel. Entropy, 2020, 22, 605.	1.1	1
47	GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. Applied Sciences (Switzerland), 2020, 10, 2039.	1.3	78
48	Hybrid Computational Intelligence Methods for Landslide Susceptibility Mapping. Symmetry, 2020, 12, 325.	1.1	56
49	Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China. Natural Hazards, 2020, 103, 3239-3261.	1.6	40
50	Hybridized neural fuzzy ensembles for dust source modeling and prediction. Atmospheric Environment, 2020, 224, 117320.	1.9	39
51	Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 2020, 720, 137320.	3.9	157
52	Spatial Proximity-Based Geographically Weighted Regression Model for Landslide Susceptibility Assessment: A Case Study of Qingchuan Area, China. Applied Sciences (Switzerland), 2020, 10, 1107.	1.3	41
53	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	1.6	22
54	Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 2020, 12, 266.	1.8	210

#	Article	IF	CITATIONS
55	Preliminary analyses of a catastrophic landslide occurred on July 23, 2019, in Guizhou Province, China. Landslides, 2020, 17, 719-724.	2.7	20
56	Mapping of Groundwater Spring Potential in Karst Aquifer System Using Novel Ensemble Bivariate and Multivariate Models. Water (Switzerland), 2020, 12, 985.	1.2	50
57	Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 2020, 11, 421.	0.9	87
58	Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, NaÃ ⁻ ve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. International Journal of Environmental Research and Public Health, 2020, 17, 2749.	1.2	159
59	Monitoring Effect of Spatial Growth on Land Surface Temperature in Dhaka. Remote Sensing, 2020, 12, 1191.	1.8	21
60	Characterization of Sobradinho landslide in fluvial valley using MASW and ERT methods. REM: International Engineering Journal, 2020, 73, 487-497.	0.2	9
61	A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer. Applied Sciences (Switzerland), 2020, 10, 635.	1.3	21
62	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	1.7	105
63	Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 2019, 9, 12296.	1.6	131
64	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58
65	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	1.8	124
66	Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards, 2019, 97, 579-609.	1.6	55
67	A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in Estimating the Heating Load of Buildings' Energy Efficiency for Smart City Planning. Applied Sciences (Switzerland), 2019, 9, 2630.	1.3	205
68	Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 2019, 247, 712-729.	3.8	169
69	Estimating the Heating Load of Buildings for Smart City Planning Using a Novel Artificial Intelligence Technique PSO-XGBoost. Applied Sciences (Switzerland), 2019, 9, 2714.	1.3	87
70	Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy, 2019, 21, 55.	1.1	11
71	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	1.2	64
72	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	0.9	89

#	Article	IF	CITATIONS
73	SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. Applied Sciences (Switzerland), 2019, 9, 3495.	1.3	42
74	Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability, 2019, 11, 4386.	1.6	130
75	A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 2019, 78, 1.	1.3	60
76	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	1.3	129
77	Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources, 2019, 8, 149.	1.6	59
78	Landslide spatial modelling using novel bivariate statistical based NaÃ ⁻ ve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the Total Environment, 2019, 663, 1-15.	3.9	182
79	Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 2019, 662, 332-346.	3.9	378
80	Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images. Sensors, 2019, 19, 2788.	2.1	63
81	SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 2019, 10, 2167-2175.	4.3	60
82	An Expression for Velocity Lag in Sediment-Laden Open-Channel Flows Based on Tsallis Entropy Together with the Principle of Maximum Entropy. Entropy, 2019, 21, 522.	1.1	5
83	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	2.1	86
84	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	1.8	90
85	Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 2019, 11, 638.	1.8	124
86	Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 2019, 178, 172-188.	2.2	107
87	Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International, 2019, 34, 1177-1201.	1.7	99
88	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
89	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
90	Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Applied Sciences (Switzerland), 2019, 9, 5534.	1.3	197

#	Article	IF	CITATIONS
91	Comparison of Conventional Deterministic and Entropy-Based Methods for Predicting Sediment Concentration in Debris Flow. Water (Switzerland), 2019, 11, 439.	1.2	5
92	Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resources Management, 2019, 33, 281-302.	1.9	145
93	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
94	Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 4397-4419.	1.6	135
95	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	1.6	94
96	Sinkhole susceptibility mapping: A comparison between Bayesâ€based machine learning algorithms. Land Degradation and Development, 2019, 30, 730-745.	1.8	63
97	Channel migration characteristics of the Yamuna River from 1954 to 2015 in the vicinity of Agra, India: A case study using remote sensing and GIS. International Journal of River Basin Management, 2019, 17, 367-375.	1.5	24
98	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.3	32
99	Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 2018, 217, 1-11.	3.8	231
100	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
101	Current status of reclaimed water in China: an overview. Journal of Water Reuse and Desalination, 2018, 8, 293-307.	1.2	71
102	A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 2018, 33, 1398-1420.	1.7	93
103	TXT-tool 1.081-6.1 A Comparative Study of the Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial Predicting Landslides at a Regional Scale. , 2018, , 139-151.		25
104	Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 2018, 621, 1124-1141.	3.9	298
105	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	1.8	131
106	Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study. Water Science and Technology, 2018, 77, 861-870.	1.2	14
107	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	2.1	146
108	Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Applied Sciences (Switzerland), 2018, 8, 2540.	1.3	140

#	Article	IF	CITATIONS
109	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	1.8	121
110	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	1.8	84
111	Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods. Scientific Reports, 2018, 8, 15364.	1.6	124
112	New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water (Switzerland), 2018, 10, 1210.	1.2	174
113	Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 2018, 18, 2464.	2.1	120
114	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	211
115	Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 2017, 76, 1.	1.3	66
116	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	2.2	104
117	Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model. Environmental Modelling and Software, 2017, 97, 145-156.	1.9	112
118	A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naÃ ⁻ ve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 2017, 8, 1955-1977.	2.0	162
119	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	1.9	416
120	Applying a Simple Analytical Solution to Modelling Wind-Driven Coastal Upwelling of Two-Layered Fluid at the Head of Tokyo Bay, Japan. Water (Switzerland), 2017, 9, 744.	1.2	2
121	Characteristics of the Torrential Rainfall-Induced Shallow Landslides by Typhoon Bilis, in July 2006, Using Remote Sensing and GIS. , 2017, , 221-230.		6
122	On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow. PLoS ONE, 2016, 11, e0148895.	1.1	11
123	Shoreline and Coastal Morphological Changes Induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar – A Study Using Archived Satellite Images. Coastal Research Library, 2016, , 65-77.	0.2	8
124	Fractal Dimension of Cohesive Sediment Flocs at Steady State under Seven Shear Flow Conditions. Water (Switzerland), 2015, 7, 4385-4408.	1.2	19
125	Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. PLoS ONE, 2015, 10, e0133262.	1.1	167
126	Automatic Case-Based Reasoning Approach for Landslide Detection: Integration of Object-Oriented Image Analysis and a Genetic Algorithm. Remote Sensing, 2015, 7, 4318-4342.	1.8	124

#	Article	IF	CITATIONS
127	Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences, 2015, 26, 227.	0.3	58
128	An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 2015, 78, 1749-1776.	1.6	182
129	Automatic detection of sinkhole collapses at finer resolutions using a multi-component remote sensing approach. Natural Hazards, 2015, 78, 1021-1044.	1.6	16
130	Remote sensing of chlorophyll-a as a measure of red tide in Tokyo Bay using hotspot analysis. Remote Sensing Applications: Society and Environment, 2015, 2, 11-25.	0.8	19
131	GIS-Based Landslide Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan. , 2014, , 419-424.		46
132	Smart Fluid Drag Reduction Technology Research for HDD. , 2013, , .		0
133	A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural Hazards, 2012, 64, 1639-1656.	1.6	98
134	GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2011, 2, 33-50.	2.0	72
135	Intelligence-based automatic detection and classification of ground collapses using object-based image analysis method: a case study in Paitan of Pearl River delta. Proceedings of SPIE, 2009, , .	0.8	2
136	Landslides detection: a case study in Conghua city of Pearl River delta. Proceedings of SPIE, 2009, , .	0.8	9
137	A web-based spatial decision support system for spatial planning and governance in the Guangdong Province. Proceedings of SPIE, 2008, , .	0.8	1
138	SPATIAL RESOLUTION EFFECTS OF DIGITAL TERRAIN MODELS ON LANDSLIDE SUSCEPTIBILITY ANALYSIS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B8, 33-36.	0.2	2
139	SPATIAL RESOLUTION EFFECTS OF DIGITAL TERRAIN MODELS ON LANDSLIDE SUSCEPTIBILITY ANALYSIS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B8, 33-36.	0.2	5
140	Application of a Novel Hybrid Machine Learning Algorithm in Shallow Landslide Susceptibility Mapping in a Mountainous Area. Frontiers in Environmental Science, 0, 10, .	1.5	6