
Markus Kraft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451599/publications.pdf Version: 2024-02-01

MADKIIS KDAFT

#	Article	IF	CITATIONS
1	Blockchain technology in the chemical industry: Machine-to-machine electricity market. Applied Energy, 2017, 195, 234-246.	5.1	563
2	Nickel Nanoparticles Encapsulated in Fewâ€Layer Nitrogenâ€Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2017, 29, 1605957.	11.1	507
3	Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chemical Society Reviews, 2016, 45, 3039-3052.	18.7	499
4	Unique PCoN Surface Bonding States Constructed on gâ€C ₃ N ₄ Nanosheets for Drastically Enhanced Photocatalytic Activity of H ₂ Evolution. Advanced Functional Materials, 2017, 27, 1604328.	7.8	329
5	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
6	Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application. Applied Energy, 2018, 209, 8-19.	5.1	271
7	Mapping surrogate gasoline compositions into RON/MON space. Combustion and Flame, 2010, 157, 1122-1131.	2.8	231
8	Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame. Combustion and Flame, 2003, 133, 173-188.	2.8	230
9	Design of computer experiments: A review. Computers and Chemical Engineering, 2017, 106, 71-95.	2.0	215
10	A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron‣ayered Double Hydroxide and Carbon Nanodomains. Advanced Materials, 2018, 30, 1705106.	11.1	209
11	A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Physical Chemistry Chemical Physics, 2012, 14, 4081.	1.3	147
12	HRTEM evaluation of soot particles produced by the non-premixed combustion of liquid fuels. Carbon, 2016, 96, 459-473.	5.4	139
13	Towards a detailed soot model for internal combustion engines. Combustion and Flame, 2009, 156, 1156-1165.	2.8	137
14	Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames. Combustion and Flame, 2006, 145, 117-127.	2.8	130
15	Research advances towards large-scale solar hydrogen production from water. EnergyChem, 2019, 1, 100014.	10.1	130
16	Modelling the internal structure of nascent soot particles. Combustion and Flame, 2010, 157, 909-914.	2.8	126
17	Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets. Applied Energy, 2017, 190, 481-489.	5.1	126
18	A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency. Combustion and Flame, 2010, 157, 523-534.	2.8	124

#	Article	IF	CITATIONS
19	Electronic and optical properties of aluminium-doped anatase and rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn>2 initio</mml:mn></mml:msub></mml:mrow></mml:math 	. <td>121 \>≺/mml:m</td>	121 \>≺/mml:m
20	A statistical approach to develop a detailed soot growth model using PAH characteristics. Combustion and Flame, 2009, 156, 896-913.	2.8	117
21	Soot inception: Carbonaceous nanoparticle formation in flames. Progress in Energy and Combustion Science, 2022, 88, 100956.	15.8	117
22	A new model for the drying of droplets containing suspended solids. Chemical Engineering Science, 2009, 64, 628-637.	1.9	107
23	Investigation of combustion emissions in a homogeneous charge compression injection engine: Measurements and a new computational model. Proceedings of the Combustion Institute, 2000, 28, 1195-1201.	2.4	105
24	The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy and Environmental Science, 2020, 13, 744-771.	15.6	104
25	Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate. Proceedings of the Combustion Institute, 2009, 32, 639-646.	2.4	103
26	Internal structure of soot particles in a diffusion flame. Carbon, 2019, 141, 635-642.	5.4	94
27	Developing the PAH-PP soot particle model using process informatics and uncertainty propagation. Proceedings of the Combustion Institute, 2011, 33, 675-683.	2.4	91
28	The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresource Technology, 2014, 151, 166-173.	4.8	90
29	Quantitative tools for cultivating symbiosis in industrial parks; a literature review. Applied Energy, 2015, 155, 599-612.	5.1	89
30	An Efficient Stochastic Algorithm for Simulating Nano-particle Dynamics. Journal of Computational Physics, 2002, 183, 210-232.	1.9	85
31	Numerical simulations of soot aggregation in premixed laminar flames. Proceedings of the Combustion Institute, 2007, 31, 693-700.	2.4	83
32	The carbon footprint and non-renewable energy demand of algae-derived biodiesel. Applied Energy, 2014, 113, 1632-1644.	5.1	83
33	Applying Industry 4.0 to the Jurong Island Eco-industrial Park. Energy Procedia, 2015, 75, 1536-1541.	1.8	83
34	Stochastic modeling of soot particle size and age distributions in laminar premixed flames. Proceedings of the Combustion Institute, 2005, 30, 1457-1465.	2.4	82
35	Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model. Applied Energy, 2016, 163, 154-166.	5.1	82
36	A fully coupled simulation of PAH and soot growth with a population balance model. Proceedings of the Combustion Institute, 2013, 34, 1827-1835.	2.4	81

#	Article	IF	CITATIONS
37	Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting. Combustion and Flame, 2007, 148, 158-176.	2.8	78
38	Models for the aggregate structure of soot particles. Combustion and Flame, 2007, 151, 160-172.	2.8	77
39	Detailed modeling of soot formation in a partially stirred plug flow reactor. Combustion and Flame, 2002, 128, 395-409.	2.8	75
40	Aromatic site description of soot particles. Combustion and Flame, 2008, 155, 161-180.	2.8	73
41	Simulating the structural evolution of droplets following shell formation. Chemical Engineering Science, 2010, 65, 713-725.	1.9	72
42	Toward a Comprehensive Model of the Synthesis of TiO ₂ Particles from TiCl ₄ . Industrial & Engineering Chemistry Research, 2007, 46, 6147-6156.	1.8	70
43	PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis. Combustion and Flame, 2016, 164, 250-258.	2.8	69
44	The evolution of the biofuel science. Renewable and Sustainable Energy Reviews, 2017, 76, 1479-1484.	8.2	69
45	First-Principles Thermochemistry for the Production of TiO2from TiCl4. Journal of Physical Chemistry A, 2007, 111, 3560-3565.	1.1	66
46	A Detailed Model for the Sintering of Polydispersed Nanoparticle Agglomerates. Aerosol Science and Technology, 2009, 43, 978-989.	1.5	66
47	Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks. Applied Energy, 2016, 175, 305-323.	5.1	66
48	The Linear Process Deferment Algorithm: A new technique for solving population balance equations. SIAM Journal of Scientific Computing, 2006, 28, 303-320.	1.3	65
49	Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study. Carbon, 2014, 67, 79-91.	5.4	65
50	A new numerical approach for the simulation of the growth of inorganic nanoparticles. Journal of Computational Physics, 2006, 211, 638-658.	1.9	64
51	A new model for the drying of droplets containing suspended solids after shell formation. Chemical Engineering Science, 2009, 64, 228-246.	1.9	64
52	New polycyclic aromatic hydrocarbon (PAH) surface processes to improve the model prediction of the composition of combustion-generated PAHs and soot. Carbon, 2010, 48, 319-332.	5.4	64
53	A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows. Chemical Engineering Science, 2011, 66, 3792-3805.	1.9	64
54	Smart Sampling Algorithm for Surrogate Model Development. Computers and Chemical Engineering, 2017, 96, 103-114.	2.0	63

#	Article	IF	CITATIONS
55	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	18.7	63
56	Extending stochastic soot simulation to higher pressures. Combustion and Flame, 2006, 145, 638-642.	2.8	62
57	A First Principles Development of a General Anisotropic Potential for Polycyclic Aromatic Hydrocarbons. Journal of Chemical Theory and Computation, 2010, 6, 683-695.	2.3	62
58	Sooting characteristics of polyoxymethylene dimethyl ether blends with diesel in a diffusion flame. Fuel, 2018, 224, 499-506.	3.4	62
59	The simultaneous reduction of nitric oxide and soot in emissions from diesel engines. Carbon, 2009, 47, 866-875.	5.4	61
60	Modelling the flame synthesis of silica nanoparticles from tetraethoxysilane. Chemical Engineering Science, 2012, 70, 54-66.	1.9	61
61	Sooting tendency of paraffin components of diesel and gasoline in diffusion flames. Fuel, 2014, 126, 8-15.	3.4	60
62	Parameter estimation in a multidimensional granulation model. Powder Technology, 2010, 197, 196-210.	2.1	59
63	Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction. Chemical Engineering Science, 2007, 62, 4717-4728.	1.9	57
64	Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combustion and Flame, 2015, 162, 2569-2581.	2.8	57
65	Stochastic weighted particle methods for population balance equations. Journal of Computational Physics, 2011, 230, 7456-7472.	1.9	56
66	Dual injection homogeneous charge compression ignition engine simulation using a stochastic reactor model. International Journal of Engine Research, 2007, 8, 41-50.	1.4	55
67	Sooting tendency and particle size distributions of n-heptane/toluene mixtures burned in a wick-fed diffusion flame. Fuel, 2016, 169, 111-119.	3.4	55
68	A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust. Carbon, 2011, 49, 1516-1531.	5.4	52
69	An improved methodology for determining threshold sooting indices from smoke point lamps. Fuel, 2013, 111, 120-130.	3.4	52
70	Sooting tendency of surrogates for the aromatic fractions of diesel and gasoline in a wick-fed diffusion flame. Fuel, 2015, 153, 31-39.	3.4	52
71	Modelling of a RDC using a combined CFD-population balance approach. Chemical Engineering Science, 2004, 59, 2597-2606.	1.9	51
72	Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions. SAE International Journal of Engines, 0, 2, 1019-1033.	0.4	50

#	Article	IF	CITATIONS
73	A detailed kinetic model for combustion synthesis of titania from TiCl4. Combustion and Flame, 2009, 156, 1764-1770.	2.8	49
74	Techno-economic assessment of carbon-negative algal biodiesel for transport solutions. Applied Energy, 2013, 106, 262-274.	5.1	49
75	Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach. Applied Energy, 2017, 204, 1412-1421.	5.1	49
76	lterative improvement of Bayesian parameter estimates for an engine model by means of experimental design. Combustion and Flame, 2012, 159, 1303-1313.	2.8	48
77	The Polarization of Polycyclic Aromatic Hydrocarbons Curved by Pentagon Incorporation: The Role of the Flexoelectric Dipole. Journal of Physical Chemistry C, 2017, 121, 27154-27163.	1.5	48
78	Manipulating Intermediates at the Au–TiO ₂ Interface over InP Nanopillar Array for Photoelectrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 11416-11428.	5.5	48
79	Reactivity of Polycyclic Aromatic Hydrocarbon Soot Precursors: Implications of Localized π-Radicals on Rim-Based Pentagonal Rings. Journal of Physical Chemistry C, 2019, 123, 26673-26682.	1.5	47
80	OntoKin: An Ontology for Chemical Kinetic Reaction Mechanisms. Journal of Chemical Information and Modeling, 2020, 60, 108-120.	2.5	47
81	Sources of CO emissions in an HCCI engine: A numerical analysis. Combustion and Flame, 2006, 144, 634-637.	2.8	46
82	Optical band gap of cross-linked, curved, and radical polyaromatic hydrocarbons. Physical Chemistry Chemical Physics, 2019, 21, 16240-16251.	1.3	45
83	A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles. Journal of Aerosol Science, 2012, 44, 83-98.	1.8	44
84	Homogeneous Charge Compression Ignition Engine: A Simulation Study on the Effects of Inhomogeneities. Journal of Engineering for Gas Turbines and Power, 2003, 125, 466-471.	0.5	43
85	Numerical investigation of DQMoM-IEM as a turbulent reaction closure. Chemical Engineering Science, 2010, 65, 1915-1924.	1.9	43
86	A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization. Applied Energy, 2016, 184, 88-102.	5.1	43
87	An agent composition framework for the J-Park Simulator - A knowledge graph for the process industry. Computers and Chemical Engineering, 2019, 130, 106577.	2.0	43
88	J-Park Simulator: An ontology-based platform for cross-domain scenarios in process industry. Computers and Chemical Engineering, 2019, 131, 106586.	2.0	43
89	Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines. Applied Energy, 2020, 267, 114844.	5.1	43
90	Universal Digital Twin - A Dynamic Knowledge Graph. Data-Centric Engineering, 2021, 2, .	1.2	43

#	Article	IF	CITATIONS
91	A computational study of an HCCI engine with direct injection during gas exchange. Combustion and Flame, 2006, 147, 118-132.	2.8	42
92	Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. Journal of Computational Physics, 2015, 303, 1-18.	1.9	42
93	An ontology framework towards decentralized information management for eco-industrial parks. Computers and Chemical Engineering, 2018, 118, 49-63.	2.0	42
94	Modelling particle mass and particle number emissions during the active regeneration of diesel particulate filters. Proceedings of the Combustion Institute, 2019, 37, 4831-4838.	2.4	42
95	From Platform to Knowledge Graph: Evolution of Laboratory Automation. Jacs Au, 2022, 2, 292-309.	3.6	42
96	Real-Time Evaluation of a Detailed Chemistry HCCI Engine Model Using a Tabulation Technique. Combustion Science and Technology, 2008, 180, 1263-1277.	1.2	41
97	Ï€-Diradical Aromatic Soot Precursors in Flames. Journal of the American Chemical Society, 2021, 143, 12212-12219.	6.6	41
98	Evaluating the EGR-AFR Operating Range of a HCCI Engine. , 2005, , .		40
99	Polymorphism of nanocrystalline TiO ₂ prepared in a stagnation flame: formation of the TiO ₂ -II phase. Chemical Science, 2019, 10, 1342-1350.	3.7	40
100	Experimental and numerical study of the evolution of soot primary particles in a diffusion flame. Proceedings of the Combustion Institute, 2019, 37, 2047-2055.	2.4	39
101	Bayesian Error Propagation for a Kinetic Model of <i>n</i> â€Propylbenzene Oxidation in a Shock Tube. International Journal of Chemical Kinetics, 2014, 46, 389-404.	1.0	38
102	First-Principles Thermochemistry for Silicon Species in the Decomposition of Tetraethoxysilane. Journal of Physical Chemistry A, 2009, 113, 9041-9049.	1.1	37
103	Modelling soot formation in a DISI engine. Proceedings of the Combustion Institute, 2011, 33, 3159-3167.	2.4	37
104	Giant fullerene formation through thermal treatment of fullerene soot. Carbon, 2017, 125, 132-138.	5.4	37
105	Polar curved polycyclic aromatic hydrocarbons in soot formation. Proceedings of the Combustion Institute, 2019, 37, 1117-1123.	2.4	37
106	Topology of Disordered 3D Graphene Networks. Physical Review Letters, 2019, 123, 116105.	2.9	37
107	Game theory-based renewable multi-energy system design and subsidy strategy optimization. Advances in Applied Energy, 2021, 2, 100024.	6.6	37
108	Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid–liquid extraction. Chemical Engineering Science, 2004, 59, 3865-3881.	1.9	36

#	Article	IF	CITATIONS
109	Modelling soot formation in a benchmark ethylene stagnation flame with a new detailed population balance model. Combustion and Flame, 2019, 203, 56-71.	2.8	36
110	Solid–liquid transitions in homogenous ovalene, hexabenzocoronene and circumcoronene clusters: A molecular dynamics study. Combustion and Flame, 2015, 162, 486-495.	2.8	35
111	Soot particle size distributions in premixed stretch-stabilized flat ethylene–oxygen–argon flames. Proceedings of the Combustion Institute, 2017, 36, 1001-1009.	2.4	35
112	Partially Stirred Reactor Model: Analytical Solutions and Numerical Convergence Study of a PDF/Monte Carlo Method. SIAM Journal of Scientific Computing, 2004, 25, 1798-1823.	1.3	33
113	NOx and N2O formation in HCCl engines. , 2005, , .		33
114	A kinetic mechanism for the thermal decomposition of titanium tetraisopropoxide. Proceedings of the Combustion Institute, 2017, 36, 1019-1027.	2.4	33
115	Extension of moment projection method to the fragmentation process. Journal of Computational Physics, 2017, 335, 516-534.	1.9	33
116	An Ontology and Semantic Web Service for Quantum Chemistry Calculations. Journal of Chemical Information and Modeling, 2019, 59, 3154-3165.	2.5	33
117	Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend. , 0, , .		32
118	Droplets population balance in a rotating disc contactor: An inverse problem approach. AICHE Journal, 2006, 52, 1441-1450.	1.8	32
119	On a multivariate population balance model to describe the structure and composition of silica nanoparticles. Computers and Chemical Engineering, 2012, 43, 130-147.	2.0	32
120	Stochastic solution of population balance equations for reactor networks. Journal of Computational Physics, 2014, 256, 615-629.	1.9	32
121	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie - International Edition, 2020, 59, 1171-1175.	7.2	32
122	Improved methodology for performing the inverse Abel transform of flame images for color ratio pyrometry. Applied Optics, 2019, 58, 2662.	0.9	32
123	First-Principles Thermochemistry for the Thermal Decomposition of Titanium Tetraisopropoxide. Journal of Physical Chemistry A, 2015, 119, 8376-8387.	1.1	31
124	Towards an ontological infrastructure for chemical process simulation and optimization in the context of eco-industrial parks. Applied Energy, 2017, 204, 1284-1298.	5.1	31
125	OntoPowSys: A power system ontology for cross domain interactions in an eco industrial park. Energy and Al, 2020, 1, 100008.	5.8	31
126	On the thermophoretic sampling and TEM-based characterisation of soot particles in flames. Carbon, 2021, 171, 711-722.	5.4	31

#	Article	IF	CITATIONS
127	Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation. Journal of Computational Physics, 2010, 229, 7672-7691.	1.9	30
128	Phase change of polycyclic aromatic hydrocarbon clusters by mass addition. Carbon, 2014, 77, 25-35.	5.4	30
129	Modelling a Dual-Fuelled Multi-Cylinder HCCI Engine Using a PDF Based Engine Cycle Simulator. , 0, , .		29
130	A Monte Carlo methods for identification and sensitivity analysis of coagulation processes. Journal of Computational Physics, 2004, 200, 50-59.	1.9	29
131	Incorporating experimental uncertainties into multivariate granulation modelling. Chemical Engineering Science, 2010, 65, 1088-1100.	1.9	29
132	Statistical Approximation of the Inverse Problem in Multivariate Population Balance Modeling. Industrial & Engineering Chemistry Research, 2010, 49, 428-438.	1.8	29
133	Delivering authentic experiences for engineering students and professionals through e-labs. , 2010, , .		29
134	Simulation and life cycle assessment of algae gasification process in dual fluidized bed gasifiers. Green Chemistry, 2015, 17, 1793-1801.	4.6	29
135	From database to knowledge graph — using data in chemistry. Current Opinion in Chemical Engineering, 2019, 26, 33-37.	3.8	29
136	On the coagulation efficiency of carbonaceous nanoparticles. Journal of Aerosol Science, 2020, 140, 105478.	1.8	29
137	Adsorption, Diffusion and Desorption of Chlorine on and from Rutile TiO2{110}: A Theoretical Investigation. ChemPhysChem, 2007, 8, 444-451.	1.0	28
138	A transferable electrostatic model for intermolecular interactions between polycyclic aromatic hydrocarbons. Chemical Physics Letters, 2011, 510, 154-160.	1.2	28
139	A new model for silicon nanoparticle synthesis. Combustion and Flame, 2013, 160, 947-958.	2.8	28
140	Modelling PAH curvature in laminar premixed flames using a detailed population balance model. Combustion and Flame, 2017, 176, 172-180.	2.8	28
141	LEAPS2: Learning based Evolutionary Assistive Paradigm for Surrogate Selection. Computers and Chemical Engineering, 2018, 119, 352-370.	2.0	28
142	Optimal site selection for modular nuclear power plants. Computers and Chemical Engineering, 2019, 125, 339-350.	2.0	28
143	Flame Synthesized Blue TiO _{2â^} <i>_x</i> with Tunable Oxygen Vacancies from Surface to Grain Boundary to Bulk. Small Methods, 2021, 5, e2000928.	4.6	28
144	The future of computational modelling in reaction engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3633-3644.	1.6	27

#	Article	IF	CITATIONS
145	A virtual laboratory to support chemical reaction engineering courses using real-life problems and industrial software. Education for Chemical Engineers, 2020, 33, 36-44.	2.8	27
146	Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth. Combustion Theory and Modelling, 2005, 9, 449-461.	1.0	26
147	The inverse problem in granulation modeling—Two different statistical approaches. AICHE Journal, 2011, 57, 3105-3121.	1.8	26
148	Production of Biorenewable Hydrogen and Syngas via Algae Gasification: A Sensitivity Analysis. Energy Procedia, 2014, 61, 2767-2770.	1.8	26
149	Modelling TiO 2 formation in a stagnation flame using method of moments with interpolative closure. Combustion and Flame, 2017, 178, 135-147.	2.8	26
150	Knowledge Graph Approach to Combustion Chemistry and Interoperability. ACS Omega, 2020, 5, 18342-18348.	1.6	26
151	Semantic 3D City Database — An enabler for a dynamic geospatial knowledge graph. Energy and AI, 2021, 6, 100106.	5.8	26
152	Bayesian parameter estimation for a jet-milling model using Metropolis–Hastings and Wang–Landau sampling. Chemical Engineering Science, 2013, 89, 244-257.	1.9	25
153	Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame. Combustion and Flame, 2016, 167, 320-334.	2.8	25
154	Self-template synthesis of CdS/NiS _x heterostructured nanohybrids for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2017, 46, 10650-10656.	1.6	25
155	Premixed Stagnation Flame Synthesized TiO ₂ Nanoparticles with Mixed Phases for Efficient Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14470-14479.	3.2	25
156	Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst. Applied Energy, 2019, 242, 1549-1561.	5.1	25
157	Reactivity of Polycyclic Aromatic Hydrocarbon Soot Precursors: Kinetics and Equilibria. Journal of Physical Chemistry A, 2020, 124, 10040-10052.	1.1	25
158	The impact of cyclic fuels on the formation and structure of soot. Combustion and Flame, 2020, 219, 1-12.	2.8	25
159	Assessing the Polycyclic Aromatic Hydrocarbon Anisotropic Potential with Application to the Exfoliation Energy of Graphite. Journal of Physical Chemistry A, 2011, 115, 13684-13693.	1.1	24
160	The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem. Journal of Cheminformatics, 2012, 4, 15.	2.8	24
161	Parameterisation of a biodiesel plant process flow sheet model. Computers and Chemical Engineering, 2016, 95, 108-122.	2.0	24
162	Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method. Computers and Chemical Engineering, 2017, 99, 171-184.	2.0	24

#	Article	IF	CITATIONS
163	A moment projection method for population balance dynamics with a shrinkage term. Journal of Computational Physics, 2017, 330, 960-980.	1.9	24
164	Emerging applications of nanocatalysts synthesized by flame aerosol processes. Current Opinion in Chemical Engineering, 2018, 20, 39-49.	3.8	24
165	First-Principles Thermochemistry for the Combustion of a TiCl4 and AlCl3 Mixture. Journal of Physical Chemistry A, 2009, 113, 13790-13796.	1.1	23
166	Comparison of the stochastic fields method and DQMoM-IEM as turbulent reaction closures. Chemical Engineering Science, 2010, 65, 5429-5441.	1.9	23
167	Experimental Investigation of a Control Method for SI-HCCI-SI Transition in a Multi-Cylinder Gasoline Engine. SAE International Journal of Engines, 0, 3, 928-937.	0.4	23
168	Implementing Detailed Chemistry and In-Cylinder Stratification into 0/1-D IC Engine Cycle Simulation Tools. , 0, , .		23
169	Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics. Combustion and Flame, 2011, 158, 179-188.	2.8	23
170	Surface reactivity of polycyclic aromatic hydrocarbon clusters. Proceedings of the Combustion Institute, 2015, 35, 1811-1818.	2.4	23
171	A detailed kinetic study of the thermal decomposition of tetraethoxysilane. Proceedings of the Combustion Institute, 2015, 35, 2291-2298.	2.4	23
172	Detailed population balance modelling of TiO 2 synthesis in an industrial reactor. Chemical Engineering Science, 2017, 164, 219-231.	1.9	23
173	Flexoelectricity and the Formation of Carbon Nanoparticles in Flames. Journal of Physical Chemistry C, 2018, 122, 22210-22215.	1.5	23
174	The effect of poly(oxymethylene) dimethyl ethers (PODE3) on soot formation in ethylene/PODE3 laminar coflow diffusion flames. Fuel, 2021, 283, 118769.	3.4	23
175	A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO. SAE International Journal of Fuels and Lubricants, 0, 2, 13-27.	0.2	22
176	Theoretical insights into the surface growth of rutile TiO2. Combustion and Flame, 2011, 158, 1868-1876.	2.8	22
177	Microkinetic Modeling of the Fischer–Tropsch Synthesis over Cobalt Catalysts. ChemCatChem, 2015, 7, 137-143.	1.8	22
178	Exploring the internal structure of soot particles using nanoindentation: A reactive molecular dynamics study. Combustion and Flame, 2020, 219, 45-56.	2.8	22
179	Two-stage Fuel Direct Injection in a Diesel Fuelled HCCI Engine. , 0, , .		21
180	From Numerical Model to Computational Intelligence: The Digital Transition of Urban Energy System. Energy Procedia, 2017, 143, 884-890.	1.8	21

#	Article	IF	CITATIONS
181	An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines. Applied Energy, 2018, 228, 1423-1438.	5.1	21
182	Ion-Induced Soot Nucleation Using a New Potential for Curved Aromatics. Combustion Science and Technology, 2019, 191, 747-765.	1.2	21
183	Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model. , 2008, , .		20
184	Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study. Journal of Aerosol Science, 2012, 44, 46-61.	1.8	20
185	Co ₃ O ₄ and Fe _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 655-665.	2.5	20
186	A detailed particle model for polydisperse aggregate particles. Journal of Computational Physics, 2019, 397, 108799.	1.9	20
187	Nanostructure of Gasification Charcoal (Biochar). Environmental Science & Technology, 2019, 53, 3538-3546.	4.6	20
188	A Combined Cycle Gas Turbine Model for Heat and Power Dispatch Subject to Grid Constraints. IEEE Transactions on Sustainable Energy, 2020, 11, 448-456.	5.9	20
189	Multiscale Cross-Domain Thermochemical Knowledge-Graph. Journal of Chemical Information and Modeling, 2020, 60, 6155-6166.	2.5	20
190	Linking reaction mechanisms and quantum chemistry: An ontological approach. Computers and Chemical Engineering, 2020, 137, 106813.	2.0	20
191	A predictor–corrector algorithm for the coupling of stiff ODEs to a particle population balance. Journal of Computational Physics, 2009, 228, 2758-2769.	1.9	19
192	Modelling gas-phase synthesis of single-walled carbon nanotubes on iron catalyst particles. Carbon, 2008, 46, 422-433.	5.4	17
193	Modelling study of single walled carbon nanotube formation in a premixed flame. Journal of Materials Chemistry, 2008, 18, 1582.	6.7	17
194	First-principles thermochemistry for the combustion of TiCl4 in a methane flame. Proceedings of the Combustion Institute, 2011, 33, 493-500.	2.4	17
195	The Suitability of Particle Models in Capturing Aggregate Structure and Polydispersity. Aerosol Science and Technology, 2013, 47, 734-745.	1.5	17
196	Evolution of the soot particle size distribution along the centreline of an n-heptane/toluene co-flow diffusion flame. Combustion and Flame, 2019, 209, 256-266.	2.8	17
197	A two-step simulation methodology for modelling stagnation flame synthesised aggregate nanoparticles. Combustion and Flame, 2019, 202, 143-153.	2.8	17
198	Partitioning of polycyclic aromatic hydrocarbons in heterogeneous clusters. Carbon, 2019, 143, 247-256.	5.4	17

#	Article	IF	CITATIONS
199	Experimental study on engine combustion and particle size distributions fueled with Jet A-1. Fuel, 2020, 263, 116747.	3.4	17
200	A Smart Contract-based agent marketplace for the J-Park Simulator - a knowledge graph for the process industry. Computers and Chemical Engineering, 2020, 139, 106896.	2.0	17
201	Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine. Applied Energy, 2021, 300, 117380.	5.1	17
202	A Parallel World Framework for scenario analysis in knowledge graphs. Data-Centric Engineering, 2020, 1, .	1.2	17
203	Direct Simulation and Mass Flow Stochastic Algorithms to Solve a Sintering-Coagulation Equation. Monte Carlo Methods and Applications, 2005, 11, .	0.3	16
204	HCCI Combustion Phasing Transient Control by Hydrogen-Rich Gas: Investigation Using a Fast Detailed-Chemistry Full-Cycle Model. , 0, , .		16
205	Simulating PM Emissions and Combustion Stability in Gasoline/Diesel Fuelled Engines. , 0, , .		16
206	Can nascent soot particles burn from the inside?. Carbon, 2016, 109, 608-615.	5.4	16
207	Numerical simulation and parametric sensitivity study of titanium dioxide particles synthesised in a stagnation flame. Journal of Aerosol Science, 2019, 138, 105451.	1.8	16
208	Detailed characterisation of TiO2 nano-aggregate morphology using TEM image analysis. Journal of Aerosol Science, 2019, 133, 96-112.	1.8	16
209	A density functional theory study on the kinetics of seven-member ring formation in polyaromatic hydrocarbons. Combustion and Flame, 2020, 217, 152-174.	2.8	16
210	A systematic method to estimate and validate enthalpies of formation using error-cancelling balanced reactions. Combustion and Flame, 2018, 187, 105-121.	2.8	15
211	Evaluating smart sampling for constructing multidimensional surrogate models. Computers and Chemical Engineering, 2018, 108, 276-288.	2.0	15
212	Automated Calibration of a Poly(oxymethylene) Dimethyl Ether Oxidation Mechanism Using the Knowledge Graph Technology. Journal of Chemical Information and Modeling, 2021, 61, 1701-1717.	2.5	15
213	Simulating Combustion of Practical Fuels and Blends for Modern Engine Applications Using Detailed Chemical Kinetics. , 0, , .		14
214	Identifying Optimal Operating Points in Terms of Engineering Constraints and Regulated Emissions in Modern Diesel Engines. , 2011, , .		14
215	Application of stochastic weighted algorithms to a multidimensional silica particle model. Journal of Computational Physics, 2013, 248, 221-234.	1.9	14
216	Mechanical Properties of Soot Particles: The Impact of Crosslinked Polycyclic Aromatic Hydrocarbons. Combustion Science and Technology, 2021, 193, 643-663.	1.2	14

#	Article	IF	CITATIONS
217	The role of oxygenated species in the growth of graphene, fullerenes and carbonaceous particles. Carbon, 2021, 182, 203-213.	5.4	14
218	A new method for calculating the diameters of partially-sintered nanoparticles and its effect on simulated particle properties. Chemical Engineering Science, 2006, 61, 158-166.	1.9	13
219	Modes of neck growth in nanoparticle aggregates. Combustion and Flame, 2008, 152, 272-275.	2.8	13
220	Comment on "Low Fractal Dimension Cluster-Dilute Soot Aggregates from a Premixed Flame― Physical Review Letters, 2010, 104, 119601; author reply 119602.	2.9	13
221	Automated IC Engine Model Development with Uncertainty Propagation. , 0, , .		13
222	HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations. , 2012, , .		13
223	Impact of powder characteristics on a particle granulation model. Chemical Engineering Science, 2013, 97, 282-295.	1.9	13
224	A multi-compartment population balance model for high shear granulation. Computers and Chemical Engineering, 2015, 75, 1-13.	2.0	13
225	Skeletal chemical mechanism of high-temperature TEOS oxidation in hydrogen–oxygen environment. Combustion and Flame, 2016, 166, 243-254.	2.8	13
226	A high-dimensional, stochastic model for twin-screw granulation – Part 1: Model description. Chemical Engineering Science, 2018, 188, 221-237.	1.9	13
227	Deep-Learning Architecture in QSPR Modeling for the Prediction of Energy Conversion Efficiency of Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18991-19000.	1.8	13
228	Simultaneous design and operation optimization of renewable combined cooling heating and power systems. AICHE Journal, 2020, 66, e17039.	1.8	13
229	Deep kernel learning approach to engine emissions modeling. Data-Centric Engineering, 2020, 1, .	1.2	13
230	Simulation of primary particle size distributions in a premixed ethylene stagnation flame. Combustion and Flame, 2020, 216, 126-135.	2.8	13
231	Reactive localized π-radicals on rim-based pentagonal rings: Properties and concentration in flames. Proceedings of the Combustion Institute, 2021, 38, 565-573.	2.4	13
232	Structural effects of C3 oxygenated fuels on soot formation in ethylene coflow diffusion flames. Combustion and Flame, 2021, 232, 111512.	2.8	13
233	Two approaches to the simulation of silica particle synthesis. Proceedings of the Combustion Institute, 2002, 29, 1039-1046.	2.4	12
234	Resolving conflicting parameter estimates in multivariate population balance models. Chemical Engineering Science, 2010, 65, 4038-4045.	1.9	12

#	Article	IF	CITATIONS
235	Cambridge weblabs: A process control system using industrial standard SIMATIC PCS 7. Education for Chemical Engineers, 2016, 16, 1-8.	2.8	12
236	Automated Advanced Calibration and Optimization of Thermochemical Models Applied to Biomass Gasification and Pyrolysis. Energy & amp; Fuels, 2018, 32, 10144-10153.	2.5	12
237	Atomic structure and electronic structure of disordered graphitic carbon nitride. Carbon, 2019, 147, 483-489.	5.4	12
238	A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines. Applied Energy, 2020, 258, 114083.	5.1	12
239	Aromatic penta-linked hydrocarbons in soot nanoparticle formation. Proceedings of the Combustion Institute, 2021, 38, 1525-1532.	2.4	12
240	Understanding the anatase-rutile stability in flame-made TiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>. Combustion and Flame, 2021, 226, 347-361.</mml:math 	2.8	12
241	Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation. Applied Energy, 2022, 305, 117877.	5.1	12
242	Universal Digital Twin – the impact of heat pumps on social inequality. Advances in Applied Energy, 2022, 5, 100079.	6.6	12
243	Automated Rational Design of Metal–Organic Polyhedra. Journal of the American Chemical Society, 2022, 144, 11713-11728.	6.6	12
244	Numerical study of a stochastic particle method for homogeneous gas-phase reactions. Computers and Mathematics With Applications, 2003, 45, 329-349.	1.4	11
245	A survey of the potential energy surface for the (benzene)13 cluster. Physical Chemistry Chemical Physics, 2011, 13, 21362.	1.3	11
246	Characterisation of lactose powder and granules for multivariate wet granulation modelling. Chemical Engineering Science, 2015, 123, 395-405.	1.9	11
247	Efficient simulation and auto-calibration of soot particle processes in Diesel engines. Applied Energy, 2020, 262, 114484.	5.1	11
248	Question Answering System for Chemistry. Journal of Chemical Information and Modeling, 2021, 61, 3868-3880.	2.5	11
249	Predicting Power Conversion Efficiency of Organic Photovoltaics: Models and Data Analysis. ACS Omega, 2021, 6, 23764-23775.	1.6	11
250	Semantic City Planning Systems (SCPS): A Literature Review. Journal of Planning Literature, 2022, 37, 415-432.	2.2	11
251	Semantic 3D City Agents—An intelligent automation for dynamic geospatial knowledge graphs. Energy and Al, 2022, 8, 100137.	5.8	11
252	Single-particle method for stochastic simulation of coagulation processes. Chemical Engineering Science, 2005, 60, 963-967.	1.9	10

#	Article	IF	CITATIONS
253	Two methods for sensitivity analysis of coagulation processes in population balances by a Monte Carlo method. Chemical Engineering Science, 2006, 61, 4966-4972.	1.9	10
254	Formaldehyde and Hydroxyl Radicals in an HCCI Engine - Calculations and LIF-Measurements. , 0, , .		10
255	Optimisation of Injection Strategy, Combustion Characteristics and Emissions for IC Engines Using Advanced Simulation Technologies. , 0, , .		10
256	Compartmental residence time estimation in batch granulators using a colourimetric image analysis algorithm and Discrete Element Modelling. Advanced Powder Technology, 2017, 28, 2239-2255.	2.0	10
257	Dynamic polarity of curved aromatic soot precursors. Combustion and Flame, 2019, 206, 150-157.	2.8	10
258	Size spectra and source apportionment of fine particulates in tropical urban environment during southwest monsoon season. Environmental Pollution, 2019, 244, 477-485.	3.7	10
259	On the reactive coagulation of incipient soot nanoparticles. Journal of Aerosol Science, 2022, 159, 105866.	1.8	10
260	Stochastic population balance methods for detailed modelling of flame-made aerosol particles. Journal of Aerosol Science, 2022, 159, 105895.	1.8	10
261	Analysis of the HCCI Combustion of a Turbocharged Truck Engine Using a Stochastic Reactor Model. , 2003, , .		10
262	Towards a detailed soot model for internal combustion engines. MTZ Worldwide, 2009, 70, 44-48.	0.1	9
263	An Enhanced Primary Reference Fuel Mechanism Considering Conventional Fuel Chemistry in Engine Simulation. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	0.5	9
264	Efficient Combustion Modelling in RCCI Engine with Detailed Chemistry. Energy Procedia, 2017, 105, 1582-1587.	1.8	9
265	Developing breakage models relating morphological data to the milling behaviour of flame synthesised titania particles. Chemical Engineering Science, 2017, 166, 53-65.	1.9	9
266	Modelling of secondary particulate emissions during the regeneration of Diesel Particulate Filters. Energy Procedia, 2017, 142, 3560-3565.	1.8	9
267	Combustion modeling in RCCI engines with a hybrid characteristic time combustion and closed reactor model. Applied Energy, 2018, 227, 665-671.	5.1	9
268	Kinetic Monte Carlo statistics of curvature integration by HACA growth and bay closure reactions for PAH growth in a counterflow diffusion flame. Proceedings of the Combustion Institute, 2021, 38, 1449-1457.	2.4	9
269	Atomic insights into the sintering process of polycyclic aromatic hydrocarbon clusters. Proceedings of the Combustion Institute, 2021, 38, 1181-1188.	2.4	9
270	TiO2 with controllable oxygen vacancies for efficient isopropanol degradation: photoactivity and reaction mechanism. Catalysis Science and Technology, 2021, 11, 4060-4071.	2.1	9

#	Article	IF	CITATIONS
271	Elucidating Reaction Pathways of the CO ₂ Electroreduction via Tailorable Tortuosities and Oxidation States of Cu Nanostructures. Advanced Functional Materials, 2022, 32, .	7.8	9
272	Clobal sensitivity analysis of a model for silicon nanoparticle synthesis. Journal of Aerosol Science, 2014, 76, 188-199.	1.8	8
273	Numerical and Experimental Study on Internal Nozzle Flow and Macroscopic Spray Characteristics of a Kind of Wide Distillation Fuel (WDF) - Kerosene. , 2016, , .		8
274	A big data framework to validate thermodynamic data for chemical species. Combustion and Flame, 2017, 176, 584-591.	2.8	8
275	J-Park Simulator, an intelligent system for information management of eco-industrial parks. Energy Procedia, 2017, 142, 2953-2958.	1.8	8
276	Analysing the effect of screw configuration using a stochastic twin-screw granulation model. Chemical Engineering Science, 2019, 203, 358-379.	1.9	8
277	Study of industrial titania synthesis using a hybrid particle-number and detailed particle model. Chemical Engineering Science, 2020, 219, 115615.	1.9	8
278	J-park simulator. , 2017, , .		8
279	Universal Digital Twin: Land use. Data-Centric Engineering, 2022, 3, .	1.2	8
280	Conservative method for the reduction of the number of particles in the Monte Carlo simulation method for kinetic equations. Journal of Computational Physics, 2005, 203, 371-378.	1.9	7
281	Moving Toward Establishing More Robust and Systematic Model Development for IC Engines Using Process Informatics. , 2010, , .		7
282	First-Principles Thermochemistry for Gas Phase Species in an Industrial Rutile Chlorinator. Journal of Physical Chemistry A, 2010, 114, 11825-11832.	1.1	7
283	Coupling Algorithms for Calculating Sensitivities of Smoluchowski's Coagulation Equation. SIAM Journal of Scientific Computing, 2010, 32, 635-655.	1.3	7
284	System Development for Eco-industrial Parks Using Ontological Innovation. Energy Procedia, 2017, 105, 2239-2244.	1.8	7
285	Vapor Pressure and Heat of Vaporization of Molecules That Associate in the Gas Phase. Industrial & Engineering Chemistry Research, 2018, 57, 5722-5731.	1.8	7
286	The role of NO2 and NO in the mechanism of hydrocarbon degradation leading to carbonaceous deposits in engines. Fuel, 2020, 267, 117218.	3.4	7
287	How does a carbon tax affect Britain's power generation composition?. Applied Energy, 2021, 298, 117117.	5.1	7
288	The World Avatar—A World Model for Facilitating Interoperability. Lecture Notes in Energy, 2022, , 39-53.	0.2	7

#	Article	IF	CITATIONS
289	Universal Digital Twin: Integration of national-scale energy systems and climate data. Data-Centric Engineering, 2022, 3, .	1.2	7
290	A new algorithm for the direct simulation of combustion systems and its application to reaction elimination. Proceedings of the Combustion Institute, 2005, 30, 1301-1308.	2.4	6
291	A Detailed Chemistry Simulation of the SI-HCCI Transition. SAE International Journal of Fuels and Lubricants, 0, 3, 230-240.	0.2	6
292	Lifting a buried object: Reverse hopper theory. Chemical Engineering Science, 2014, 105, 198-207.	1.9	6
293	A high-dimensional, stochastic model for twin-screw granulation Part 2: Numerical methodology. Chemical Engineering Science, 2018, 188, 18-33.	1.9	6
294	A new methodology to calculate process rates in a kinetic Monte Carlo model of PAH growth. Combustion and Flame, 2019, 209, 133-143.	2.8	6
295	An assessment of the viability of alternatives to biodiesel transport fuels. Applied Energy, 2019, 251, 113363.	5.1	6
296	A hybrid particle-number and particle model for efficient solution of population balance equations. Journal of Computational Physics, 2019, 389, 189-218.	1.9	6
297	How do the oxygenated functional groups in ether, carbonate and alcohol affect soot formation in Jet A2 diffusion flames?. Combustion and Flame, 2022, 243, 111849.	2.8	6
298	Simulations of TiO2 nanoparticles synthesised off-centreline in jet-wall stagnation flames. Journal of Aerosol Science, 2022, 162, 105928.	1.8	6
299	Question answering system for chemistry—A semantic agent extension. Digital Chemical Engineering, 2022, 3, 100032.	1.2	6
300	PIC formation during the combustion of simple hydrocarbons in inhomogeneous incineration systems. Proceedings of the Combustion Institute, 1998, 27, 1275-1281.	0.3	5
301	An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. Journal of Computational Physics, 2003, 185, 139-157.	1.9	5
302	An explicit numerical scheme for homogeneous gas-phase high-temperature combustion systems. Combustion Theory and Modelling, 2006, 10, 171-182.	1.0	5
303	Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data. , 2011, , .		5
304	Ab initio Variational Transition State Theory and Master Equation Study of the Reaction (OH) ₃ SiOCH ₂ + CH ₃ ⇌ (OH) ₃ SiOC _{2Zeitschrift Fur Physikalische Chemie, 2015, 229, 691-708.}	ıb al4 <sub< td=""><td>>5¤/sub>.</td></sub<>	>5¤/sub>.
305	Smart Adaptive Sampling for Surrogate Modelling. Computer Aided Chemical Engineering, 2016, 38, 631-636.	0.3	5

306A new iterative scheme for solving the discrete Smoluchowski equation. Journal of Computational
Physics, 2018, 352, 373-387.1.95

#	Article	IF	CITATIONS
307	Extended first-principles thermochemistry for the oxidation of titanium tetrachloride. Combustion and Flame, 2019, 199, 441-450.	2.8	5
308	Bivariate extension of the moment projection method for the particle population balance dynamics. Computers and Chemical Engineering, 2019, 124, 206-227.	2.0	5
309	Modelling Soot Formation: Model of Particle Formation. Green Energy and Technology, 2013, , 389-407.	0.4	5
310	Some analytic solutions for stochastic reactor models based on the joint composition PDF. Combustion Theory and Modelling, 1999, 3, 343-358.	1.0	5
311	Understanding the particulate formation process in the engine fuelled with diesel/Jet A-1 blends. Fuel, 2022, 313, 122675.	3.4	5
312	Influence of turbulent mixing on the pyrolysis of chloroform using detailed chemical kinetics. Proceedings of the Combustion Institute, 1996, 26, 2431-2437.	0.3	4
313	Analysis of the HCCI Combustion of a Turbocharged Truck Engine Using a Stochastic Reactor Model. , 2002, , 97.		4
314	A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition. , 2010, , .		4
315	Dual-Fuel Effects on HCCI Operating Range: Experiments with Primary Reference Fuels. , 2013, , .		4
316	Theoretical Study of the Ti–Cl Bond Cleavage Reaction in TiCl ₄ . Zeitschrift Fur Physikalische Chemie, 2017, 231, 1489-1506.	1.4	4
317	Sphere Encapsulated Monte Carlo: Obtaining Minimum Energy Configurations of Large Aromatic Systems. Journal of Physical Chemistry A, 2019, 123, 7303-7313.	1.1	4
318	Practically Useful Models for Kinetics of Biodiesel Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 4983-4992.	3.2	4
319	Rational Synthesis of Amorphous Ironâ€Nickel Phosphonates for Highly Efficient Photocatalytic Water Oxidation with Almost 100 % Yield. Angewandte Chemie, 2020, 132, 1187-1191.	1.6	4
320	Self-assembly of curved aromatic molecules in nanoparticles. Carbon, 2021, 182, 70-88.	5.4	4
321	ElChemo: A cross-domain interoperability between chemical and electrical systems in a plant. Computers and Chemical Engineering, 2022, 156, 107556.	2.0	4
322	Embedding Energy Storage Systems into a Dynamic Knowledge Graph. Industrial & Engineering Chemistry Research, 2022, 61, 8390-8398.	1.8	4
323	Analysis of wet co oxidation under turbulent non-premixed conditions using a PDF method and detailed chemical kinetics. Proceedings of the Combustion Institute, 1996, 26, 807-813.	0.3	3
324	An efficient stochastic chemistry approximation for the PDF transport equation. Monte Carlo Methods and Applications, 2002, 8, .	0.3	3

#	Article	IF	CITATIONS
325	A Stochastic Algorithm for Parametric Sensitivity in Smoluchowski's Coagulation Equation. SIAM Journal on Numerical Analysis, 2010, 48, 1064-1086.	1.1	3
326	Outlier analysis for a silicon nanoparticle population balance model. Combustion and Flame, 2017, 177, 89-97.	2.8	3
327	First Observation of an Acetate Switch in a Methanogenic Autotroph (Methanococcus maripaludis) Tj ETQq1 1	0.784314	rgBT /Overloo
328	Surface properties of heterogeneous polycyclic aromatic hydrocarbon clusters. Proceedings of the Combustion Institute, 2021, 38, 1115-1123.	2.4	3
329	Coupling Algorithms for Calculating Sensitivities of Population Balances. , 2008, , .		2
330	Towards the Development of Carbon Dioxide Emission Landscape in Singapore. Energy Procedia, 2015, 75, 2898-2903.	1.8	2
331	Influence of experimental observations on n-propylbenzene kinetic parameter estimates. Proceedings of the Combustion Institute, 2015, 35, 357-365.	2.4	2
332	Towards Intelligent Thermal Energy Management of Eco-industrial Park through Ontology-based Approach. Energy Procedia, 2017, 105, 3295-3300.	1.8	2
333	Temperature and CH* measurements and simulations of laminar premixed ethylene jet-wall stagnation flames. Proceedings of the Combustion Institute, 2021, 38, 2083-2091.	2.4	2
334	Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection. , 0, , .		2
335	Blockchain Technology in the Chemical Industry. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, .	3.3	2
336	Cyber-Physical Systems inÂDecarbonisation. Lecture Notes in Energy, 2022, , 17-28.	0.2	2
337	Spark ignition to homogeneous charge compression ignition mode transition study: a new modelling approach. International Journal of Engine Research, 2012, 13, 540-564.	1.4	1
338	Application of Dynamic \hat{l}_1^1 -T Map: Analysis on a Natural Gas/Diesel Fueled RCCI Engine. , 2015, , .		1
339	Impact of Urea Direct Injection on NOx Emission Formation of Diesel Engines Fueled by Biodiesel. , 2015, , .		1
340	Modelling of soot formation in a diesel engine with the moment projection method. Energy Procedia, 2017, 142, 4092-4097.	1.8	1
341	Assessment of biodiesel plant waste heat recovery with respect to economics and CO 2 emission. Energy Procedia, 2017, 142, 1100-1105.	1.8	1
342	An Ontology Based Cyber-infrastructure for the Development of Smart Eco Industrial Parks. Computer Aided Chemical Engineering, 2018, 44, 2047-2052.	0.3	1

#	Article	IF	CITATIONS
343	Enhanced Procurement and Production Strategies for Chemical Plants: Utilizing Real-Time Financial Data and Advanced Algorithms. Industrial & Engineering Chemistry Research, 2019, 58, 3072-3081.	1.8	1
344	Modelling Investigation of the Thermal Treatment of Ash-Contaminated Particulate Filters. Emission Control Science and Technology, 0, , 1.	0.8	1
345	Collaborative Sustainability Strategies for Online Laboratories. , 2012, , 468-490.		1
346	Towards a Detailed Soot Model for Internal Combustion Engines. ATZ Autotechnology, 2009, 9, 54-57.	0.1	0
347	An Enhanced PRF Mechanism Considering Conventional Fuel Chemistry in Engine Simulation. , 2015, , .		0
348	Application of Dynamic ï•–T Map: Analysis on a Natural Gas/Diesel Fueled RCCI Engine. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	0.5	0
349	A random cloud algorithm for the Schrödinger equation. Monte Carlo Methods and Applications, 2017, 23, .	0.3	0
350	Smart adaptive sampling for developing surrogate approximations of physicochemical systems. Computer Aided Chemical Engineering, 2018, , 2191-2196.	0.3	0
351	The Search For Efficient, Low-Emission Fuels. , 2018, , .		0