
Marc Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk. Nano Letters, 2014, 14, 1255-1262.	4.5	439
2	Monodisperse and Inorganically Capped Sn and Sn/SnO ₂ Nanocrystals for High-Performance Li-Ion Battery Anodes. Journal of the American Chemical Society, 2013, 135, 4199-4202.	6.6	346
3	Polypyrenes as Highâ€Performance Cathode Materials for Aluminum Batteries. Advanced Materials, 2018, 30, e1705644.	11.1	180
4	Pyrite (FeS ₂) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale, 2015, 7, 9158-9163.	2.8	167
5	Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry, 2020, 44, 1677-1683.	1.4	146
6	Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale, 2015, 7, 455-459.	2.8	128
7	Efficient and Inexpensive Sodium–Magnesium Hybrid Battery. Chemistry of Materials, 2015, 27, 7452-7458.	3.2	96
8	Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnOxNanoparticles by Surface-Enhanced Nuclear Magnetic Resonance, Mössbauer, and X-ray Absorption Spectroscopies. ACS Nano, 2014, 8, 2639-2648.	7.3	87
9	Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7053-7059.	5.2	86
10	Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 2019, 9, 11758.	1.6	76
11	Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries. Scientific Reports, 2015, 5, 8418.	1.6	64
12	Monodisperse CoSn ₂ and FeSn ₂ nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale, 2018, 10, 6827-6831.	2.8	52
13	Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries. Chimia, 2015, 69, 724.	0.3	38
14	Oxidized Co–Sn nanoparticles as long-lasting anode materials for lithium-ion batteries. Nanoscale, 2018, 10, 3777-3783.	2.8	25
15	Colloidal BiF ₃ nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes. Nanoscale, 2015, 7, 16601-16605.	2.8	21
16	Porous Ge@C materials via twin polymerization of germanium(<scp>ii</scp>) salicyl alcoholates for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2705-2719.	5.2	21
17	A high-voltage concept with sodium-ion conducting \hat{I}^2 -alumina for magnesium-sodium dual-ion batteries. Communications Chemistry, 2019, 2, .	2.0	20
18	From molecular germanates to microporous Ge@C via twin polymerization. Dalton Transactions, 2016, 45, 5741-5751.	1.6	12

#	Article	IF	CITATIONS
19	Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries. Chemical Communications, 2020, 56, 13872-13875.	2.2	4