Monica Pacheco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451428/publications.pdf Version: 2024-02-01

MONICA PACHECO

#	Article	lF	CITATIONS
1	Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Physical Review B, 2010, 82, .	3.2	656
2	Electronic transport through bilayer graphene flakes. Physical Review B, 2010, 81, .	3.2	97
3	Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. Journal of Physics Condensed Matter, 2006, 18, 1877-1884.	1.8	84
4	Quantum rings under magnetic fields: Electronic and optical properties. Physical Review B, 2000, 62, 6963-6966.	3.2	75
5	Electronic properties of twisted trilayer graphene. Physical Review B, 2013, 87, .	3.2	64
6	Quantum dots under electric and magnetic fields: Impurity-related electronic properties. Journal of Applied Physics, 1997, 82, 270-274.	2.5	61
7	Effect of an electric field on the Bohm-Aharonov oscillations in the electronic spectrum of a quantum ring. Physical Review B, 2002, 65, .	3.2	57
8	Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields. Physical Review B, 2003, 68, .	3.2	54
9	Transport properties of antidot superlattices of graphene nanoribbons. Physical Review B, 2009, 80, .	3.2	54
10	Carbon nanotube tori under external fields. Physical Review B, 2004, 70, .	3.2	48
11	Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology, 2008, 19, 065402.	2.6	48
12	Electron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure. Microelectronics Journal, 2005, 36, 231-233.	2.0	47
13	Photon-assisted transport in a carbon nanotube calculated using Green's function techniques. Physical Review B, 2007, 75, .	3.2	46
14	Bound states in the continuum in graphene quantum dot structures. Europhysics Letters, 2010, 91, 66001.	2.0	46
15	Defects and external field effects on the electronic properties of a carbon nanotube torus. Physical Review B, 2003, 67, .	3.2	44
16	Optical response of a quantum dot superlattice under electric and magnetic fields. Physical Review B, 2001, 64, .	3.2	37
17	Transport properties of graphene quantum dots. Physical Review B, 2011, 83, .	3.2	37
18	An array of quantum dots as a spin filter device by using Dicke and Fano effects. Nanotechnology, 2009, 20, 434013.	2.6	36

#	Article	IF	CITATIONS
19	Persistent current magnification in a double quantum-ring system. Physical Review B, 2005, 71, .	3.2	34
20	Electron Transmission through Graphene Bilayer Flakes. Acta Physica Polonica A, 2012, 122, 299-303.	0.5	31
21	Far-infrared optical spectrum of donor impurities in quantum dots in a magnetic field. Physica Status Solidi (B): Basic Research, 2003, 235, 146-150.	1.5	28
22	Tight-binding model for opto-electronic properties of penta-graphene nanostructures. Scientific Reports, 2018, 8, 11070.	3.3	27
23	Novel electro-optical properties of a semiconductor superlattice under a magnetic field. Physical Review Letters, 1990, 64, 3058-3061.	7.8	25
24	Electronic properties of twisted bilayer nanoribbons. Physical Review B, 2014, 89, .	3.2	25
25	Electronic spectrum of a two-dimensional quantum dot array in the presence of electric and magnetic fields in the Hall configuration. Physical Review B, 2005, 71, .	3.2	24
26	Effect of the Stark confinement on the excitonic optical spectrumof an array of coupled quantum dots. Physical Review B, 1997, 55, 10688-10693.	3.2	21
27	Energy spectra of exciton states in disk-shaped GaAs-Ga1-xAlxAs quantum dots under growth-direction magnetic fields. European Physical Journal B, 2007, 56, 303-309.	1.5	20
28	Tight-binding model for carbon nanotubes from <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2010, 22, 275503.	1.8	20
29	Exciton Stark and Landau ladders in a GaAs/AlxGa1â^'xAs superlattice. Physical Review B, 1995, 51, 14414-14420.	3.2	19
30	Magnetic-field effects on excitons trapped in quantum dots/interface defects in narrow quantum wells. Physical Review B, 2003, 68, .	3.2	19
31	Optical absorption spectrum of rotated trilayer graphene. Journal of Materials Science, 2014, 49, 642-647.	3.7	19
32	Current and Shot noise in DNA chains. Organic Electronics, 2012, 13, 1420-1429.	2.6	18
33	Spectra of acceptors in quantum dots: the effect of a magnetic field. Journal of Physics Condensed Matter, 1999, 11, 1079-1088.	1.8	17
34	Conductance gaps in graphene ribbons designed by molecular aggregations. Nanotechnology, 2009, 20, 095705.	2.6	17
35	Spin and Charge Caloritronics in Bilayer Graphene Flakes with Magnetic Contacts. Physical Review Applied, 2017, 8, .	3.8	17
36	Electric field effects on the energy spectrum of carbon nanotubes. Journal of Physics Condensed Matter, 2005, 17, 5839-5847.	1.8	16

#	Article	IF	CITATIONS
37	Magnetic-field effects on transport in carbon nanotube junctions. Physical Review B, 2007, 75, .	3.2	16
38	Electronic and dynamics properties of a molecular wire of graphane nanoclusters. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 4190-4197.	2.1	15
39	Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons. Nanomaterials, 2017, 7, 69.	4.1	15
40	Electronic and magnetic properties of pentagonal nanoribbons. Carbon, 2020, 162, 209-219.	10.3	15
41	Electronic and impurity states in triple quantum wells. Physica B: Condensed Matter, 2001, 302-303, 77-83.	2.7	14
42	Electronic properties of coupled quantum rings in the presence of a magnetic field. Brazilian Journal of Physics, 2004, 34, 666-668.	1.4	14
43	Fano effect and Andreev bound states in T-shape double quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1474-1478.	2.1	14
44	Spin-polarized electrons in bilayer graphene ribbons. Journal of Applied Physics, 2013, 113, .	2.5	14
45	Electronic properties of β-graphyne bilayers. Chemical Physics Letters, 2015, 620, 67-72.	2.6	14
46	Coulomb-interaction effects on the electronic structure of radially polarized excitons in nanorings. Physical Review B, 2006, 73, .	3.2	13
47	A theoretical study of exciton energy levels in laterally coupled quantum dots. Journal of Physics Condensed Matter, 2009, 21, 405801.	1.8	12
48	Simple results for oneâ€dimensional periodic potentials. Physica Status Solidi (B): Basic Research, 1982, 114, 399-403.	1.5	11
49	Optical response of a superlattice in parallel magnetic and electric fields. Physical Review B, 1992, 46, 15200-15206.	3.2	11
50	Intra-donor transitions in triple quantum-well structures under external fields. Semiconductor Science and Technology, 2002, 17, 952-956.	2.0	11
51	Bound states in the continuum: Localization of Dirac-like fermions. Europhysics Letters, 2014, 108, 46008.	2.0	11
52	Fano–Andreev effect in a T-shape double quantum dot in the Kondo regime. Journal of Physics Condensed Matter, 2017, 29, 135301.	1.8	11
53	Transport properties of graphene nanoribbon heterostructures. Microelectronics Journal, 2008, 39, 537-540.	2.0	10
54	Symmetry-protected metallic and topological phases in penta-materials. Scientific Reports, 2019, 9, 12754.	3.3	10

#	Article	IF	CITATIONS
55	Electronic transport of folded graphene nanoribbons. Solid State Communications, 2012, 152, 1400-1403.	1.9	9
56	Photon-assisted transport in bilayer graphene flakes. Physical Review B, 2017, 95, .	3.2	9
57	Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response. Nanoscale, 2021, 13, 6117-6128.	5.6	9
58	Magnetoabsorption spectra of intraexcitonic transitions in GaAs-(Ga,Al)As semiconductor quantum wells. Journal of Applied Physics, 2002, 92, 1227-1231.	2.5	8
59	Magnetoexciton transitions in GaAs-Ga1-xAlxAs quantum wells. Journal of Physics Condensed Matter, 2002, 14, 1021-1033.	1.8	8
60	Fano and Dicke effects in a double Rashba-ring system. Nanotechnology, 2008, 19, 355202.	2.6	8
61	Electron transport in quantum antidots made of four-terminal graphene ribbons. Journal of Applied Physics, 2009, 106, 104303.	2.5	8
62	Resonant states in heterostructures of graphene nanoribbons. Physica B: Condensed Matter, 2009, 404, 2773-2776.	2.7	8
63	Graphene nanoribbon thermopower as a tool for molecular spectroscopy. Journal of Applied Physics, 2013, 114, .	2.5	8
64	Cone-like graphene nanostructures: electronic and optical properties. Nanoscale Research Letters, 2013, 8, 384.	5.7	8
65	Electric and magnetic field manipulation and storage of charge-tunable excitons. Physical Review B, 2014, 89, .	3.2	8
66	Electron confinement induced by diluted hydrogen-like ad-atoms in graphene ribbons. Physical Chemistry Chemical Physics, 2015, 17, 24707-24715.	2.8	7
67	Fanoâ€Andreev and Fanoâ€Majorana Correspondence in Quantum Dot Hybrid Structures. Annalen Der Physik, 2020, 532, 1900409.	2.4	7
68	Excitonic effects in a superlattice in parallel electric and magnetic fields. Journal of Physics Condensed Matter, 1993, 5, A363-A364.	1.8	6
69	Infrared absorption in quantum wires: Effects of impurities and external fields. Solid State Communications, 2010, 150, 788-793.	1.9	6
70	The influence of the magnetic field on the photosubstitution reaction of coordination complexes. Chemical Physics Letters, 1984, 112, 187-189.	2.6	5
71	Graphene nanoribbon array in a cellular automata architecture for propagation of binary information. Applied Physics Letters, 2009, 94, .	3.3	5
72	Perturbation potential produced by a monolayer of InAs on GaAs(100). Physical Review B, 2003, 68, .	3.2	4

#	Article	IF	CITATIONS
73	Magneto-absorption of donor impurities in quantum-well wires. Microelectronics Journal, 2008, 39, 1254-1256.	2.0	4
74	Conductance of Armchair GNRs with side-attached organic molecules. Microelectronics Journal, 2008, 39, 1233-1235.	2.0	4
75	Effects of applied electric and magnetic fields on a donor impurity in laterally coupled quantum dots. Journal of Physics Condensed Matter, 2011, 23, 325301.	1.8	4
76	Transport response of carbon-based resonant cavities under time-dependent potential and magnetic fields. Europhysics Letters, 2011, 94, 47002.	2.0	4
77	Simulation of the first growth phase of single-walled carbon nanotubes using a model based on a cellular automaton. Solid State Communications, 2012, 152, 41-44.	1.9	4
78	Enhancement of thermoelectric efficiency by quantum interference effects in trilayer silicene flakes. Journal of Physics Condensed Matter, 2017, 29, 015004.	1.8	4
79	Negative differential resistance in hybrid carbon-based structures. Physical Review B, 2019, 99, .	3.2	4
80	Electronic properties and topological phases of a two-dimensional allotrope of nitrogenated carbon. Physical Review B, 2020, 101, .	3.2	4
81	The Stark ladder density of states in a finite crystal. Journal of Physics C: Solid State Physics, 1988, 21, 739-745.	1.5	3
82	Electronic and optical spectrum for a superlattice in parallel magnetic and electric fields: Six-band model. Surface Science, 1992, 267, 545-548.	1.9	3
83	Optical properties of carbon nanotubes under external electric fields. Brazilian Journal of Physics, 2006, 36, 440-442.	1.4	3
84	Exciton diamagnetic shifts in GaAs–Ga1â^'xAlxAs quantum dots and ultrathin quantum wells. Journal of Physics Condensed Matter, 2007, 19, 216224.	1.8	3
85	Electronic properties of nanoribbon junctions. Microelectronics Journal, 2008, 39, 1239-1241.	2.0	3
86	Probing optical spectra of carbon nanotubes with external fields. Journal of Physics Condensed Matter, 2011, 23, 065301.	1.8	3
87	Evolution of Quantum Cellular Automata in Graphene Nanoribbons. Journal of Computational and Theoretical Nanoscience, 2012, 9, 802-807.	0.4	3
88	Optical properties of graphene nanocones under electric and magnetic fields. Journal of Physics Condensed Matter, 2017, 29, 455304.	1.8	3
89	Dicke and Fano-Andreev reflections in a triple quantum-dot system. Scientific Reports, 2021, 11, 3941.	3.3	3
90	Electric and magnetic field effects on electronic structure of straight and toroidal carbon nanotubes. Brazilian Journal of Physics, 2004, 34, 644-646.	1.4	3

#	Article	IF	CITATIONS
91	Topological bands in the PdSe ₂ pentagonal monolayer. Physical Chemistry Chemical Physics, 2022, 24, 15749-15755.	2.8	3
92	Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects. Physica B: Condensed Matter, 2003, 340-342, 1090-1093.	2.7	2
93	Electronic spectrum of two coupled semiconductor quantum disks under external fields. Microelectronics Journal, 2003, 34, 733-736.	2.0	2
94	Resonant tunneling: Relation between the transmission coefficient and a measurable quantity. Surface Science, 1990, 228, 486-488.	1.9	1
95	Stark optical transitions in bidimensional arrays of quantum dots. Solid State Communications, 2001, 117, 667-672.	1.9	1
96	Magnetoexciton states and diamagnetic shifts in quantum dots/ultrathin quantum wells under growth-direction magnetic fields. Microelectronics Journal, 2008, 39, 348-350.	2.0	1
97	J coupling and chemical shifts in carbon nanostructures for quantum computing. Chemical Physics Letters, 2009, 470, 249-254.	2.6	1
98	Electronic transfer mechanism in self-assembled monolayers of silicon. Journal of Solid State Electrochemistry, 2019, 23, 3099-3106.	2.5	1
99	Transport signatures of few-atom carbon rings. Physical Chemistry Chemical Physics, 0, , .	2.8	1
100	Intra-magnetoexciton transitions in semiconductor quantum wells. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
101	Exciton mixing and internal transitions of neutral magnetoexcitons in quantum wells. Physica Status Solidi (B): Basic Research, 2004, 241, 2434-2439.	1.5	0
102	Fano–Kondo and the Kondo box regimes crossover in a quantum dot coupled to a quantum box. Journal of Physics Condensed Matter, 2013, 25, 505601.	1.8	0