MarÃ-a A GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4451059/publications.pdf

Version: 2024-02-01

82 papers 5,567 citations

41 h-index

71061

79644 73 g-index

84 all docs 84 docs citations

84 times ranked 4800 citing authors

#	Article	IF	CITATIONS
1	Biobased composites from agro-industrial wastes and by-products. Emergent Materials, 2022, 5, 873-921.	3.2	69
2	Starch Nanocomposite Films: Migration Studies of Nanoparticles to Food Simulants and Bio-Disintegration in Soil. Polymers, 2022, 14, 1636.	2.0	5
3	Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent. Carbohydrate Polymers, 2021, 252, 117208.	5.1	41
4	Bio-Packaging Material Impact on Blueberries Quality Attributes under Transport and Marketing Conditions. Polymers, 2021, 13, 481.	2.0	10
5	Corn Starchâ€Chitosan Proportion Affects Biodegradable Film Performance for Food Packaging Purposes. Starch/Staerke, 2021, 73, 2000104.	1.1	9
6	Extraction and Characterization of Proteins from Pachyrhizus ahipa Roots: an Unexploited Protein-Rich Crop. Plant Foods for Human Nutrition, 2021, 76, 179-188.	1.4	5
7	Effect of thermal and ultrasonic treatments on technological and physicochemical characteristics of fibrous residues from ahipa and cassava starch extraction. Future Foods, 2021, 4, 100057.	2.4	2
8	Green Biocomposites for Packaging Applications. Composites Science and Technology, 2021, , 1-30.	0.4	4
9	Sunflower Oil Industry By-product as Natural Filler of Biocomposite Foams for Packaging Applications. Journal of Polymers and the Environment, 2021, 29, 1869-1879.	2.4	6
10	Cassava-based biocomposites as fertilizer controlled-release systems for plant growth improvement. Industrial Crops and Products, 2020, 144, 112062.	2.5	16
11	Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Composites Part B: Engineering, 2020, 182, 107653.	5.9	27
12	Sustainable panels based on starch bioadhesives: An insight into structural and tribological performance. International Journal of Biological Macromolecules, 2020, 148, 898-907.	3.6	10
13	Nanocomposite films with silver nanoparticles synthesized in situ: Effect of corn starch content. Food Hydrocolloids, 2019, 97, 105200.	5.6	34
14	Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon, 2019, 5, e01877.	1.4	53
15	Sustainable panels design based on modified cassava starch bioadhesives and wood processing byproducts. Industrial Crops and Products, 2019, 137, 171-179.	2.5	29
16	Eco-compatible cassava starch films for fertilizer controlled-release. International Journal of Biological Macromolecules, 2019, 134, 302-307.	3.6	35
17	Jerusalem artichoke tuber flour as a wheat flour substitute for biscuit elaboration. LWT - Food Science and Technology, 2019, 108, 361-369.	2.5	22
18	Fermentation and drying effects on bread-making potential of sour cassava and ahipa starches. Food Research International, 2019, 116, 620-627.	2.9	10

#	Article	IF	Citations
19	Particle Size Distribution Effect on Cassava Starch and Cassava Bagasse Biocomposites. ACS Sustainable Chemistry and Engineering, 2019, 7, 1052-1060.	3.2	22
20	Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 2018, 42, 795-804.	3.8	151
21	Technological properties of sour cassava starches: Effect of fermentation and drying processes. LWT - Food Science and Technology, 2018, 93, 116-123.	2.5	43
22	Processing–properties–applications relationship of nanocomposites based on thermoplastic corn starch and talc. Polymer Composites, 2018, 39, 1331-1338.	2.3	10
23	Materiales eco-compatibles reforzados a base de almid $ ilde{A}^3$ n de mandioca para aplicaciones agron $ ilde{A}^3$ micas. Revista Materia, 2018, 23, .	0.1	2
24	PelÃcula biodegradable de almidÃ 3 n de maÃz termoplÃ $_1$ stico y quitosano con actividad antimicrobiana empleada como envase activo. Revista Materia, 2018, 23, .	0.1	0
25	Starch films for agronomic applications: comparative study of urea and glycerol as plasticizers. International Journal of Environment Agriculture and Biotechnology, 2018, 3, 1854-1864.	0.0	8
26	Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 2017, 70, 152-162.	5.6	113
27	Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications. Food Packaging and Shelf Life, 2017, 14, 128-136.	3.3	66
28	Composites and Nanocomposites Based on Starches. Effect of Mineral and Organic Fillers on Processing, Structure, and Final Properties of Starch., 2017,, 125-151.		4
29	Quality and Technological Properties of Gluten-Free Biscuits Made with & amp; lt; i& amp; gt; Pachyrhizus ahipa& amp; lt; /i& amp; gt; Flour as a Novel Ingredient. Food and Nutrition Sciences (Print), 2017, 08, 70-83.	0.2	7
30	Starch extraction process coupled to protein recovery from leguminous tuberous roots () Tj ETQq0 0 0 rgBT /Ov	erlock 10 ⁻	rf 50 302 Td (
31	Starchâ€based films and food coatings: An overview. Starch/Staerke, 2016, 68, 1026-1037.	1.1	99
32	Grapefruit Seed Extract and Lemon Essential Oil as Active Agents in Corn Starch–Chitosan Blend Films. Food and Bioprocess Technology, 2016, 9, 2033-2045.	2.6	56
33	An Insight into the Role of Glycerol in Chitosan Films. Food Biophysics, 2016, 11, 117-127.	1.4	36
34	Experimental study of the application of edible coatings in pumpkin sticks submitted to osmotic dehydration. Drying Technology, 2016, 34, 635-644.	1.7	20
35	Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids, 2015, 51, 281-294.	5.6	110
36	Thermoplastic starch/talc bionanocomposites. Influence of particle morphology on final properties. Food Hydrocolloids, 2015, 51, 432-440.	5.6	35

#	Article	IF	CITATIONS
37	Thermoplastic starch plasticized with alginate–glycerol mixtures: Melt-processing evaluation and film properties. Carbohydrate Polymers, 2015, 126, 83-90.	5.1	45
38	Enhancement of thermoplastic starch final properties by blending with poly(É)-caprolactone). Carbohydrate Polymers, 2015, 134, 205-212.	5.1	34
39	Talc Nanoparticles Influence on Thermoplastic Corn Starch Film Properties. , 2015, 8, 338-345.		15
40	Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films. Carbohydrate Polymers, 2015, 134, 324-332.	5.1	31
41	Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Industrial Crops and Products, 2015, 65, 79-89.	2.5	76
42	Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids, 2015, 43, 18-24.	5.6	137
43	Gluten-Free Autochthonous Foodstuff (South America and Other Countries). , 2015, , 605-644.		0
44	<i>Pachyrhizus ahipa</i> roots and starches: Composition and functional properties related to their food uses. Starch/Staerke, 2014, 66, 539-548.	1.1	10
45	Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products, 2014, 58, 305-314.	2.5	98
46	Microstructural Characterization Of Chitosan Films Used As Support For Ferulic Acid Release. Advanced Materials Letters, 2014, 5, 578-586.	0.3	4
47	Controlled delivery of propionic acid from chitosan films for pastry dough conservation. Journal of Food Engineering, 2013, 116, 524-531.	2.7	30
48	Potassium sorbate controlled release from corn starch films. Materials Science and Engineering C, 2013, 33, 1583-1591.	3.8	35
49	Acetylated and native corn starch blend films produced by blown extrusion. Journal of Food Engineering, 2013, 116, 286-297.	2.7	69
50	Nutritional profile and anti-nutrient analyses of Pachyrhizus ahipa roots from different accessions. Food Research International, 2013, 54, 255-261.	2.9	17
51	Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 2013, 95, 664-674.	5.1	144
52	Heat Treatment To Modify the Structural and Physical Properties of Chitosan-Based Films. Journal of Agricultural and Food Chemistry, 2012, 60, 492-499.	2.4	53
53	Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization. Materials Science and Engineering C, 2012, 32, 1931-1940.	3.8	62
54	Physicochemical, thermal and sorption properties of nutritionally differentiated flours and starches. Journal of Food Engineering, 2012, 113, 569-576.	2.7	23

#	Article	IF	CITATIONS
55	Non-traditional flours: frontiers between ancestral heritage and innovation. Food and Function, 2012, 3, 606.	2.1	23
56	Constrained mixture design applied to the development of cassava starch–chitosan blown films. Journal of Food Engineering, 2012, 108, 262-267.	2.7	87
57	Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 2011, 25, 1261-1269.	5.6	123
58	Pachyrhizus ahipa (Wedd.) Parodi roots and flour: Biochemical and functional characteristics. Food Chemistry, 2011, 126, 1670-1678.	4.2	22
59	Biodegradable packages development from starch based heat sealable films. Journal of Food Engineering, 2011, 105, 254-263.	2.7	104
60	Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering, 2010, 100, 160-168.	2.7	116
61	Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers, 2010, 82, 270-276.	5.1	228
62	Composition and food properties of <i>Pachyrhizus ahipa </i> roots and starch. International Journal of Food Science and Technology, 2010, 45, 223-233.	1.3	34
63	Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science and Emerging Technologies, 2010, 11, 369-375.	2.7	180
64	Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 2009, 23, 684-690.	5.6	128
65	Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloids, 2009, 23, 722-728.	5.6	52
66	Effects of production process and plasticizers on stability of films and sheets of oat starch. Materials Science and Engineering C, 2009, 29, 492-498.	3.8	74
67	Effects of plasticizers on the properties of oat starch films. Materials Science and Engineering C, 2009, 29, 532-538.	3.8	134
68	Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 2009, 90, 531-539.	2.7	179
69	Characterization of Starch and Composite Edible Films and Coatings. , 2009, , 169-209.		59
70	Comparison of the deep frying process in coated and uncoated dough systems. Journal of Food Engineering, 2008, 84, 383-393.	2.7	46
71	Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 2008, 73, 573-581.	5.1	169
72	Effects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts. Food Chemistry, 2007, 103, 701-709.	4.2	55

#	Article	IF	CITATIONS
73	Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids, 2007, 21, 66-72.	5.6	151
74	Physicochemical, Water Vapor Barrier and Mechanical Properties of Corn Starch and Chitosan Composite Films. Starch/Staerke, 2006, 58, 453-463.	1.1	124
75	Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 2006, 75, 453-460.	2.7	312
76	Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 2005, 60, 235-244.	5.1	195
77	Microstructural characterization of yam starch films. Carbohydrate Polymers, 2002, 50, 379-386.	5.1	300
78	Composite starch-based coatings applied to strawberries (Fragaria ananassa). Molecular Nutrition and Food Research, 2001, 45, 267-272.	0.0	54
79	Microstructural Characterization of Plasticized Starch-Based Films. Starch/Staerke, 2000, 52, 118-124.	1.1	197
80	Edible starch films and coatings characterization: scanning electron microscopy, water vapor, and gas permeabilities. Scanning, 1999, 21, 348-353.	0.7	69
81	Starch-based coatings: effect on refrigerated strawberry (Fragaria ananassa) quality. Journal of the Science of Food and Agriculture, 1998, 76, 411-420.	1.7	88
82	Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria×Ananassa) Quality and Stability. Journal of Agricultural and Food Chemistry, 1998, 46, 3758-3767.	2.4	192