Jin Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4450777/publications.pdf

Version: 2024-02-01

		1040056	940533
16	280	9	16
papers	citations	h-index	g-index
16	16	16	373
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	An Open-Framework Structured Material: [Ni(en) ₂] ₃ [Fe(CN) ₆] ₂ as a Cathode Material for Aqueous Sodium- and Potassium-lon Batteries. ACS Applied Materials & Diterfaces, 2022, 14, 16197-16203.	8.0	6
2	Fabrication of a chiral luminescent hydrogel from gold nanoclusters <i>via</i> molecular recognition. Chemical Communications, 2021, 57, 10202-10205.	4.1	13
3	Design of an efficient photocatalyst: a type II heterojunction for enhanced hydrogen production driven by visible light. Physical Chemistry Chemical Physics, 2021, 23, 11893-11899.	2.8	5
4	How size, edge shape, functional groups and embeddedness influence the electronic structure and partial optical properties of graphene nanoribbons. Physical Chemistry Chemical Physics, 2021, 23, 20695-20701.	2.8	5
5	Self-Assembled Chiral Phosphorescent Microflowers from Au Nanoclusters with Dual-Mode pH Sensing and Information Encryption. ACS Nano, 2021, 15, 4947-4955.	14.6	44
6	A sensitive chemosensor for nitro-containing compounds based on Au nanoclusters/Ba2+ co-assembly system: The crucial role of ligands to metal charge transfer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127160.	4.7	3
7	Decarbonylative Issues Involved in Ru(II)â€Catalyzed [6+2â^'1] Annulation Reaction of Hydroxychromone with Alkyne: A DFT Study. European Journal of Organic Chemistry, 2021, 2021, 266-273.	2.4	3
8	Fabrication of a Luminescent Supramolecular Hydrogel Based on the AIE Strategy of Gold Nanoclusters and their Application as a Luminescence Switch. Journal of Physical Chemistry C, 2020, 124, 23844-23851.	3.1	18
9	Graphitic carbon nitride nanodots: electronic structure and its influence factors. Journal of Materials Science, 2020, 55, 5488-5498.	3.7	3
10	Electronic energy transfer studied by many-body Green's function theory. Journal of Chemical Physics, 2019, 150, 164107.	3.0	9
11	Passivated Codoping Can Improve the Solar-to-Hydrogen Efficiency of Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2018, 122, 7296-7302.	3.1	20
12	Origin of the deep band-gap state in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<mml:mrow><mml:mi>d</mml:mi><mml:mi>d</mml:mi>bonds between Ti-Ti pairs. Physical Review B, 2018, 98, .</mml:mrow></mml:mn></mml:msub></mml:math>	3.2	14
13	Where do photogenerated holes at the g-C ₃ N ₄ /water interface go for water splitting: H ₂ O or OH ^{â°'} ?. Nanoscale, 2018, 10, 15624-15631.	5.6	39
14	Influence of functional groups on water splitting in carbon nanodot and graphitic carbon nitride composites: a theoretical mechanism study. Physical Chemistry Chemical Physics, 2017, 19, 4997-5003.	2.8	34
15	A new energy transfer channel from carotenoids to chlorophylls in purple bacteria. Nature Communications, 2017, 8, 71.	12.8	32
16	Optical properties of acene molecules and pentacene crystal from the many-body Green's function method. Physical Chemistry Chemical Physics, 2016, 18, 30777-30784.	2.8	32