
Shoen Kume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4450760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. Science, 2003, 299, 1032-1032.	12.6	893
2	Dopamine Is a Regulator of Arousal in the Fruit Fly. Journal of Neuroscience, 2005, 25, 7377-7384.	3.6	502
3	Methionine Metabolism Regulates Maintenance and Differentiation of Human Pluripotent Stem Cells. Cell Metabolism, 2014, 19, 780-794.	16.2	421
4	The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature, 2002, 417, 295-299.	27.8	287
5	Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neuroscience, 2012, 15, 1516-1523.	14.8	281
6	The Xenopus IP3 receptor: Structure, function, and localization in oocytes and eggs. Cell, 1993, 73, 555-570.	28.9	220
7	Activation of the G Protein Gq/11 Through Tyrosine Phosphorylation of the α Subunit. Science, 1997, 276, 1878-1881.	12.6	137
8	Role of Inositol 1,4,5-Trisphosphate Receptor in Ventral Signaling in Xenopus Embryos. Science, 1997, 278, 1940-1943.	12.6	117
9	Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes To Cells, 2008, 13, 731-746.	1.2	103
10	Autophagic Cell Death of Pancreatic Acinar Cells in Serine Protease Inhibitor Kazal Type 3—Deficient Mice. Gastroenterology, 2005, 129, 696-705.	1.3	96
11	Guided Differentiation of Embryonic Stem Cells into Pdx1-Expressing Regional-Specific Definitive Endoderm. Stem Cells, 2008, 26, 874-885.	3.2	96
12	Wnt and Notch Signals Guide Embryonic Stem Cell Differentiation into the Intestinal Lineages. Stem Cells, 2013, 31, 1086-1096.	3.2	86
13	Enhanced expression of PDX-1 and Ngn3 by exendin-4 during Î ² cell regeneration in STZ-treated mice. Biochemical and Biophysical Research Communications, 2005, 327, 1170-1178.	2.1	84
14	Calcium waves along the cleavage furrows in cleavage-stage Xenopus embryos and its inhibition by heparin Journal of Cell Biology, 1996, 135, 181-190.	5.2	76
15	Developmental Expression of the Inositol 1,4,5-Trisphosphate Receptor and Structural Changes in the Endoplasmic Reticulum during Oogenesis and Meiotic Maturation ofXenopus laevis. Developmental Biology, 1997, 182, 228-239.	2.0	67
16	Tissue-specific demethylation in CpG-poor promoters during cellular differentiation. Human Molecular Genetics, 2011, 20, 2710-2721.	2.9	66
17	Synthesized basement membranes direct the differentiation of mouse embryonic stem cells into pancreatic lineages. Journal of Cell Science, 2010, 123, 2733-2742.	2.0	64
18	VMAT2 identified as a regulator of late-stage β-cell differentiation. Nature Chemical Biology, 2014, 10, 141-148.	8.0	63

#	Article	IF	CITATIONS
19	Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system. Journal of Molecular Cell Biology, 2014, 6, 394-408.	3.3	62
20	The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster. PLoS ONE, 2015, 10, e0128101.	2.5	59
21	Probability that the commitment of murine erythroleukemia cell differentiation is determined by the c-myc level. Journal of Molecular Biology, 1988, 202, 779-786.	4.2	57
22	Dopamine Modulates Metabolic Rate and Temperature Sensitivity in Drosophila melanogaster. PLoS ONE, 2012, 7, e31513.	2.5	49
23	Efficient Differentiation of Embryonic Stem Cells into Hepatic Cells In Vitro Using a Feeder-Free Basement Membrane Substratum. PLoS ONE, 2011, 6, e24228.	2.5	48
24	Sexually dimorphic expression of <i>Mafb</i> regulates masculinization of the embryonic urethral formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16407-16412.	7.1	47
25	Pan-Neuronal Knockdown of Calcineurin Reduces Sleep in the Fruit Fly, <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2011, 31, 13137-13146.	3.6	44
26	DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers. PLoS ONE, 2011, 6, e26052.	2.5	41
27	Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas. Genes To Cells, 2008, 13, 667-678.	1.2	39
28	Inhibition of Cdk5 Promotes β-Cell Differentiation From Ductal Progenitors. Diabetes, 2018, 67, 58-70.	0.6	39
29	Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate. Development (Cambridge), 2011, 138, 1947-1955.	2.5	38
30	A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Scientific Reports, 2015, 5, 17297.	3.3	37
31	High Oxygen Condition Facilitates the Differentiation of Mouse and Human Pluripotent Stem Cells into Pancreatic Progenitors and Insulin-producing Cells. Journal of Biological Chemistry, 2014, 289, 9623-9638.	3.4	36
32	The Role of CXCL12-CXCR4 Signaling Pathway in Pancreatic Development. Theranostics, 2013, 3, 11-17.	10.0	35
33	Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster. PLoS ONE, 2012, 7, e32007.	2.5	35
34	Gq Pathway Desensitizes Chemotactic Receptor-induced Calcium Signaling via Inositol Trisphosphate Receptor Down-regulation. Journal of Biological Chemistry, 1995, 270, 4840-4844.	3.4	33
35	Developmental expression of the inositol 1,4,5-trisphosphate receptor and localization of inositol 1,4,5-trisphosphate during early embryogenesis in Xenopus laevis. Mechanisms of Development, 1997, 66, 157-168.	1.7	32
36	Differentiation and characterization of embryonic stem cells into three germ layers. Biochemical and Biophysical Research Communications, 2009, 381, 694-699.	2.1	31

#	Article	IF	CITATIONS
37	High calorie diet augments age-associats sleep impairment in Drosophila. Biochemical and Biophysical Research Communications, 2012, 417, 812-816.	2.1	31
38	A synthetic nanofibrillar matrix promotes in vitro hepatic differentiation of embryonic stem cells and induced pluripotent stem cells. Journal of Cell Science, 2013, 126, 5391-9.	2.0	31
39	Pan-neuronal knockdown of the c-Jun N-terminal Kinase (JNK) results in a reduction in sleep and longevity in Drosophila. Biochemical and Biophysical Research Communications, 2012, 417, 807-811.	2.1	30
40	TGF-β signaling potentiates differentiation of embryonic stem cells to Pdx-1 expressing endodermal cells. Genes To Cells, 2005, 10, 503-516.	1.2	28
41	Stem-cell-based approaches for regenerative medicine. Development Growth and Differentiation, 2005, 47, 393-402.	1.5	27
42	Albumin gene targeting in human embryonic stem cells and induced pluripotent stem cells with helper-dependent adenoviral vector to monitor hepatic differentiation. Stem Cell Research, 2013, 10, 179-194.	0.7	25
43	Generation of Functional Insulin-Producing Cells From Mouse Embryonic Stem Cells Through 804G Cell-Derived Extracellular Matrix and Protein Transduction of Transcription Factors. Stem Cells Translational Medicine, 2014, 3, 114-127.	3.3	24
44	Dopamine D2 Receptor-Mediated Regulation of Pancreatic Î ² Cell Mass. Stem Cell Reports, 2016, 7, 95-109.	4.8	24
45	Structure and Function of Inositol 1,4,5-Trisphosphate Receptor. Annals of the New York Academy of Sciences, 1993, 707, 178-197.	3.8	22
46	Fate maps of ventral and dorsal pancreatic progenitor cells in early somite stage mouse embryos. Mechanisms of Development, 2012, 128, 597-609.	1.7	22
47	The molecular basis and prospects in pancreatic development. Development Growth and Differentiation, 2005, 47, 367-374.	1.5	21
48	Embryonic and adult stem cell systems in mammals: Ontology and regulation. Development Growth and Differentiation, 2010, 52, 115-129.	1.5	21
49	Gαs Family G Proteins Activate IP3–Ca2+ Signaling via Gβγ and Transduce Ventralizing Signals in Xenopus. Developmental Biology, 2000, 226, 88-103.	2.0	20
50	Hyaline cartilage formation and enchondral ossification modeled with KUM5 and OP9 chondroblasts. Journal of Cellular Biochemistry, 2007, 100, 1240-1254.	2.6	20
51	Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment. Biochemical and Biophysical Research Communications, 2013, 430, 1103-1108.	2.1	20
52	Sweetness induces sleep through gustatory signalling independent of nutritional value in a starved fruit fly. Scientific Reports, 2017, 7, 14355.	3.3	19
53	Origin of pancreatic precursors in the chick embryo and the mechanism of endoderm regionalization. Mechanisms of Development, 2009, 126, 539-551.	1.7	18
54	Conserved origin of the ventral pancreas in chicken. Mechanisms of Development, 2009, 126, 817-827.	1.7	18

#	Article	IF	CITATIONS
55	An expression profile analysis of ES cell-derived definitive endodermal cells and Pdx1-expressing cells. BMC Developmental Biology, 2011, 11, 13.	2.1	18
56	Collagen vitrigel promotes hepatocytic differentiation of induced pluripotent stem cells into functional hepatocyte-like cells. Biology Open, 2019, 8, .	1.2	18
57	Generation of Human-Induced Pluripotent Stem Cell-Derived Functional Enterocyte-Like Cells for Pharmacokinetic Studies. Stem Cell Reports, 2021, 16, 295-308.	4.8	18
58	Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Scientific Reports, 2021, 11, 5437.	3.3	18
59	Molecular cloning and expression profile of Xenopus calcineurin A subunit11The nucleotide sequence of XCnA has been deposited in DDBJ/DMBL/GenBank DNA database under the accession number AB037146 Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1499, 164-170.	4.1	17
60	Profiling of Embryonic Stem Cell Differentiation. Review of Diabetic Studies, 2014, 11, 102-114.	1.3	17
61	Analysis of gene expressions of embryonic stemâ€derived Pdx1â€expressing cells: Implications of genes involved in pancreas differentiation. Development Growth and Differentiation, 2009, 51, 463-472.	1.5	15
62	Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists. European Journal of Pharmacology, 2014, 737, 194-201.	3.5	14
63	Identification of DAF1/CD55, a Novel Definitive Endoderm Marker. Cell Structure and Function, 2010, 35, 73-80.	1.1	14
64	Beneficial Effect of Insulin Treatment on Islet Transplantation Outcomes in Akita Mice. PLoS ONE, 2014, 9, e95451.	2.5	14
65	In vitro models of pancreatic differentiation using embryonic stem or induced pluripotent stem cells. Congenital Anomalies (discontinued), 2011, 51, 21-25.	0.6	13
66	Induced Pluripotent Stem Cell Elimination in a Cell Sheet by Methionine-Free and 42°C Condition for Tumor Prevention. Tissue Engineering - Part C: Methods, 2018, 24, 605-615.	2.1	13
67	Role of the inositol 1,4,5-trisphosphate receptor in early embryonic development. Cellular and Molecular Life Sciences, 1999, 56, 296-304.	5.4	12
68	Epiplakin1 is expressed in the cholangiocyte lineage cells in normal liver and adult progenitor cells in injured liver. Gene Expression Patterns, 2011, 11, 255-262.	0.8	12
69	Desensitization of IP3-induced Ca2+ release by overexpression of a constitutively active Gqalpha protein converts ventral to dorsal fate in Xenopus early embryos. Development Growth and Differentiation, 2000, 42, 327-335.	1.5	11
70	Secreted Cerberus1 as a Marker for Quantification of Definitive Endoderm Differentiation of the Pluripotent Stem Cells. PLoS ONE, 2013, 8, e64291.	2.5	11
71	Generation of familial amyloidotic polyneuropathy-specific induced pluripotent stem cells. Stem Cell Research, 2014, 12, 574-583.	0.7	11
72	VMAT2 Safeguards β-Cells Against Dopamine Cytotoxicity Under High-Fat Diet–Induced Stress. Diabetes, 2020, 69, 2377-2391.	0.6	11

#	Article	IF	CITATIONS
73	Temporal organization of rest defined by actigraphy data in healthy and childhood chronic fatigue syndrome children. BMC Psychiatry, 2013, 13, 281.	2.6	9
74	Mild electrical stimulation with heat shock guides differentiation of embryonic stem cells into Pdx1-expressing cells within the definitive endoderm. BMC Biotechnology, 2017, 17, 14.	3.3	9
75	Recent progress in pancreatic islet cell therapy. Inflammation and Regeneration, 2021, 41, 1.	3.7	9
76	Calcium/calmodulin-dependent protein kinase I in Xenopus laevis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 499-507.	1.6	8
77	A balance between self-renewal and commitment in the murine erythroleukemia cells with the transferred c-myc gene; an in vitro stochastic model. Cell Differentiation and Development, 1989, 28, 129-133.	0.4	6
78	Erythropoietin facilitates definitive endodermal differentiation of mouse embryonic stem cells via activation of ERK signaling. American Journal of Physiology - Cell Physiology, 2017, 312, C573-C582.	4.6	6
79	Insulin2Q104del (Kuma) mutant mice develop diabetes with dominant inheritance. Scientific Reports, 2020, 10, 12187.	3.3	4
80	Expression of Epiplakin1 in the developing and adult mouse retina. Japanese Journal of Ophthalmology, 2010, 54, 85-88.	1.9	3
81	Influence of 60 ns pulsed electric fields on embryonic stem cells. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18, 1119-1123.	2.9	3
82	Neural cells play an inhibitory role in pancreatic differentiation of pluripotent stem cells. Genes To Cells, 2015, 20, 1028-1045.	1.2	3
83	Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish. Genes To Cells, 2016, 21, 492-504.	1.2	3
84	Late stage definitive endodermal differentiation can be defined by Daf1 expression. BMC Developmental Biology, 2016, 16, 19.	2.1	3
85	Different murine-derived feeder cells alter the definitive endoderm differentiation of human induced pluripotent stem cells. PLoS ONE, 2018, 13, e0201239.	2.5	3
86	A culture substratum with net-like polyamide fibers promotes the differentiation of mouse and human pluripotent stem cells to insulin-producing cells. Biomedical Materials (Bristol), 2019, 14, 045019.	3.3	3
87	Hepatic Differentiation from Murine and Human iPS Cells Using Nanofiber Scaffolds. Methods in Molecular Biology, 2014, 1357, 475-483.	0.9	2
88	Hepatic Differentiation from Human Ips Cells Using M15 Cells. Methods in Molecular Biology, 2014, 1357, 375-381.	0.9	2
89	Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation. Methods in Molecular Biology, 2015, 1307, 205-212.	0.9	2
90	Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development. FEBS Letters, 2016, 590, 2584-2593.	2.8	2

#	Article	IF	CITATIONS
91	Future Perspectives for the Treatment of Diabetes: Importance of a Regulatory Framework. Therapeutic Innovation and Regulatory Science, 2019, 53, 535-541.	1.6	2
92	Dietary sodium chloride attenuates increased β-cell mass to cause glucose intolerance in mice under a high-fat diet. PLoS ONE, 2021, 16, e0248065.	2.5	2
93	Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation. Methods in Molecular Biology, 2015, 1341, 173-180.	0.9	1
94	Pancreatic Differentiation from Murine Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1341, 417-423.	0.9	1
95	Dopaminergic sleep regulation in Drosophila melanogaster. Neuroscience Research, 2011, 71, e172.	1.9	0
96	Xenopus Embryos and ES Cells as Tools for Studies of Developmental Biology. Neurochemical Research, 2011, 36, 1280-1285.	3.3	0
97	Heterogeneity of βâ€cells. Journal of Diabetes Investigation, 2017, 8, 656-657.	2.4	0
98	Detailed analysis at a singleâ€cell level of cells undergoing pancreatic differentiation. Journal of Diabetes Investigation, 2020, 11, 20-21.	2.4	0
99	Guiding ES cell differentiation into the definitive endoderm lineages. Inflammation and Regeneration, 2010, 30, 109-114.	3.7	0