List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/445056/publications.pdf Version: 2024-02-01

Ruulie Luu

#	Article	IF	CITATIONS
1	Does omega-3 PUFA-enriched oral nutritional intervention benefit cancer patients receiving chemo (radio) therapy? A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 2023, 63, 3081-3096.	10.3	7
2	Dietary oleic acid supplementation and blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 2022, 62, 2508-2525.	10.3	10
3	Analysis of Triacylglycerols in Sumac (Rhus typhina L.) Seed Oil from Different Origins by UPLC-Q-TOF-MS. Food Analytical Methods, 2022, 15, 26-33.	2.6	1
4	Synergistic and antagonistic interactions of α-tocopherol, γ-oryzanol and phytosterol in refined coconut oil. LWT - Food Science and Technology, 2022, 154, 112789.	5.2	9
5	Key chemical composition of walnut (Juglans regia. L) Oils generated with different processing methods and their cholesterol-lowering effects in HepG2 cells. Food Bioscience, 2022, 45, 101436.	4.4	4
6	The enzymatic synthesis of EPA-rich medium- and long-chain triacylglycerol improves the digestion behavior of MCFA and EPA: evidence on <i>in vitro</i> digestion. Food and Function, 2022, 13, 131-142.	4.6	8
7	Medium and long-chain structured triacylglycerol enhances vitamin D bioavailability in an emulsion-based delivery system: combination of <i>in vitro</i> and <i>in vivo</i> studies. Food and Function, 2022, 13, 1762-1773.	4.6	6
8	Comparative effects of sesame lignans (sesamin, sesamolin, and sesamol) on oxidative stress and lipid metabolism in steatosis <scp>HepG2</scp> cells. Journal of Food Biochemistry, 2022, 46, e14180.	2.9	8
9	Reviews of medium- and long-chain triglyceride with respect to nutritional benefits and digestion and absorption behavior. Food Research International, 2022, 155, 111058.	6.2	24
10	Interactions between liposoluble antioxidants: A critical review. Food Research International, 2022, 155, 111104.	6.2	11
11	The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: A comparison of phospholipid profiles. Food Bioscience, 2022, 47, 101630.	4.4	4
12	Effects of temperature and ferric ion on the formation of glycerol core aldehydes during simulated frying. Food Chemistry, 2022, 385, 132596.	8.2	6
13	Impact of interactions between whey protein isolate and different phospholipids on the properties of krill oil emulsions: A consideration for functional lipids efficient delivery. Food Hydrocolloids, 2022, 130, 107692.	10.7	16
14	In vitro digestion of binary mixture of α-tocopherol and γ-oryzanol in oil-in-water emulsion: Changes in stability and antioxidant potential. Food Research International, 2022, 159, 111606.	6.2	3
15	Effects of processing methods on the chemical composition and antioxidant capacity of walnut (Juglans regia L.) oil. LWT - Food Science and Technology, 2021, 135, 109958.	5.2	41
16	Characterization and determination of free phytosterols and phytosterol conjugates: The potential phytochemicals to classify different rice bran oil and rice bran. Food Chemistry, 2021, 344, 128624.	8.2	15
17	Medium / long-chain structured triglycerides are superior to physical mixtures triglycerides in Caenorhabditis elegans lifespan through an AMPK modified pathway. Food Bioscience, 2021, 39, 100815.	4.4	9
18	Identification and in vitro anti-inflammatory activity of different forms of phenolic compounds in Camellia oleifera oil. Food Chemistry, 2021, 344, 128660.	8.2	37

#	Article	IF	CITATIONS
19	Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chemistry, 2021, 343, 128431.	8.2	46
20	The dopaminergic neuroprotective effects of different phytosterols identified in rice bran and rice bran bran oil. Food and Function, 2021, 12, 10538-10549.	4.6	5
21	Differentiated 4,4-dimethylsterols from vegetable oils reduce fat deposition depending on the NHR-49/SCD pathway in <i>Caenorhabditis elegans</i> . Food and Function, 2021, 12, 6841-6850.	4.6	8
22	Effects of oral vitamin D supplementation on inflammatory bowel disease: a systematic review and meta-analysis. Food and Function, 2021, 12, 7588-7606.	4.6	20
23	New perspective toward nutritional support for malnourished cancer patients: Role of lipids. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1381-1421.	11.7	13
24	Physical Stability, Oxidative Stability, and Bioactivity of Nanoemulsion Delivery Systems Incorporating Lipophilic Ingredients: Impact of Oil Saturation Degree. Journal of Agricultural and Food Chemistry, 2021, 69, 5405-5415.	5.2	17
25	Effects of chain length and saturation of triglycerides on cellular antioxidant activity of vegetable oil emulsions. LWT - Food Science and Technology, 2021, 146, 111437.	5.2	4
26	Interactions between α-tocopherol and γ-oryzanol in oil-in-water emulsions. Food Chemistry, 2021, 356, 129648.	8.2	12
27	The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food and Function, 2021, 12, 5685-5702.	4.6	45
28	Chemical characterization of fourteen kinds of novel edible oils: A comparative study using chemometrics. LWT - Food Science and Technology, 2020, 118, 108725.	5.2	24
29	Evaluation of the Antioxidant Properties of Micronutrients in Different Vegetable Oils. European Journal of Lipid Science and Technology, 2020, 122, 1900079.	1.5	28
30	Health benefits of 4,4-dimethyl phytosterols: an exploration beyond 4-desmethyl phytosterols. Food and Function, 2020, 11, 93-110.	4.6	22
31	Physical properties and cellular antioxidant activity of vegetable oil emulsions with different chain lengths and saturation of triglycerides. LWT - Food Science and Technology, 2020, 121, 108948.	5.2	20
32	Comparison of the characteristics and oxidation kinetic parameters of flaxseed (<i>Linum) Tj ETQq0 0 0 rgBT /0 Preservation, 2020, 44, e14753.</i>	Dverlock 1 2.0	0 Tf 50 227 T 7
33	Composition and antioxidant study of procyanidins from peanut skins. Journal of Food Measurement and Characterization, 2020, 14, 2781-2789.	3.2	5
34	Analysis of Phytochemical Composition of <i>Camellia oleifera</i> Oil and Evaluation of its Antiâ€Inflammatory Effect in Lipopolysaccharideâ€Stimulated <scp>RAW</scp> 264.7 Macrophages. Lipids, 2020, 55, 353-363.	1.7	11
35	Sea buckthorn pulp oil nanoemulsions fabricated by ultra-high pressure homogenization process: A promising carrier for nutraceutical. Journal of Food Engineering, 2020, 287, 110129.	5.2	33
36	Characteristic volatiles fingerprints and profiles determination in different grades of coconut oil by	9.7	20

³⁶ HSâ€GCâ€IMS and HSâ€SPMEâ€GCâ€MS. International Journal of Food Science and Technology, 2020, 55, 3670-3679. ²⁰

#	Article	IF	CITATIONS
37	Effects of stigmasterol on the thermal stability of soybean oil during heating. European Food Research and Technology, 2020, 246, 1755-1763.	3.3	9
38	Characterization of fatty acids, triacylglycerols, phytosterols and tocopherols in peony seed oil from five different major areas in China. Food Research International, 2020, 137, 109416.	6.2	29
39	Revisiting the 4,4-dimethylsterols profile from different kinds of vegetable oils by using GC-MS. LWT - Food Science and Technology, 2020, 124, 109163.	5.2	17
40	Preparation of highly pure stigmasteryl oleate by enzymatic esterification of stigmasterol enriched from soybean phytosterols. LWT - Food Science and Technology, 2020, 128, 109464.	5.2	18
41	Effects of interaction between α-tocopherol, oryzanol, and phytosterol on the antiradical activity against DPPH radical. LWT - Food Science and Technology, 2019, 112, 108206.	5.2	23
42	Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food and Function, 2019, 10, 4220-4230.	4.6	17
43	Effects of chemical refinement on the quality of coconut oil. Journal of Food Science and Technology, 2019, 56, 3109-3116.	2.8	16
44	Comparison of solvents for extraction of walnut oils: Lipid yield, lipid compositions, minor-component content, and antioxidant capacity. LWT - Food Science and Technology, 2019, 110, 346-352.	5.2	45
45	Glycerol derived process contaminants in refined coconut oil induce cholesterol synthesis in HepG2 cells. Food and Chemical Toxicology, 2019, 127, 135-142.	3.6	5
46	Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT - Food Science and Technology, 2019, 109, 26-32.	5.2	66
47	Potential underutilized oil resources from the fruit and seed of Rhus chinensis Mill. Industrial Crops and Products, 2019, 129, 339-344.	5.2	16
48	Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata. Food Chemistry, 2019, 279, 279-287.	8.2	93
49	Oxidation degree of soybean oil at induction time point under Rancimat test condition: Theoretical derivation and experimental observation. Food Research International, 2019, 120, 756-762.	6.2	29
50	Phytochemical Content, Minorâ€Constituent Compositions, and Antioxidant Capacity of Screwâ€Pressed Walnut Oil Obtained from Roasted Kernels. European Journal of Lipid Science and Technology, 2019, 121, 1800292.	1.5	34
51	Quantification of polycyclic aromatic hydrocarbons and phthalic acid esters in deodorizer distillates obtained from soybean, rapeseed, corn and rice bran oils. Food Chemistry, 2019, 275, 206-213.	8.2	18
52	A Rapid Method for Simultaneous Analysis of Lignan and γâ€Tocopherol in Sesame Oil by Using Normalâ€Phase Liquid Chromatography. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 13-19.	1.9	12
53	Effect of Moisture and Heat Treatment of Corn Germ on Oil Quality. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 383-390.	1.9	21
54	Assessment of contamination source and quality control approach for polycyclic aromatic hydrocarbons in wood-pressed rapeseed oil. Food Additives and Contaminants - Part A Chemistry, Analysis, Control. Exposure and Risk Assessment, 2018, 35, 1155-1163.	2.3	10

#	Article	IF	CITATIONS
55	Effect of dietary alpha-linolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. European Journal of Nutrition, 2018, 57, 877-891.	3.9	40
56	Chemical Characterization, Oxidative Stability, and In Vitro Antioxidant Capacity of Sesame Oils Extracted by Supercritical and Subcritical Techniques and Conventional Methods: A Comparative Study Using Chemometrics. European Journal of Lipid Science and Technology, 2018, 120, 1700326.	1.5	34
57	BCFA-enriched vernix-monoacylglycerol reduces LPS-induced inflammatory markers in human enterocytes in vitro. Pediatric Research, 2018, 83, 874-879.	2.3	32
58	The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food and Function, 2018, 9, 6048-6062.	4.6	42
59	Chemical Compositions of Walnut (<i>Juglans regia</i> L.) Oils from Different Cultivated Regions in China. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 825-834.	1.9	37
60	Comparison of Different Processing Methods of Iron Walnut Oils (<i>Juglans sigillata</i>): Lipid Yield, Lipid Compositions, Minor Components, and Antioxidant Capacity. European Journal of Lipid Science and Technology, 2018, 120, 1800151.	1.5	37
61	Evaluation and Comparison of Lipid Composition, Oxidation Stability, and Antioxidant Capacity of Sesame Oil: An Industrialâ€6cale Study Based on Oil Extraction Method. European Journal of Lipid Science and Technology, 2018, 120, 1800158.	1.5	14
62	Degradation of aflatoxin B ₁ in peanut meal by electron beam irradiation. International Journal of Food Properties, 2018, 21, 892-901.	3.0	16
63	Quality of Woodâ€Pressed Rapeseed Oil. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 767-777.	1.9	21
64	Triacylglycerol composition, melting and crystallization profiles of lipase catalysed anhydrous milk fats hydrolysed. International Journal of Food Properties, 2017, , 1-16.	3.0	8
65	Dietary linoleic acid intake and blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Food and Function, 2017, 8, 3091-3103.	4.6	32
66	The Contents of Lignans in Sesame Seeds and Commercial Sesame Oils of China. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1035-1044.	1.9	37
67	Composition of Rice Bran Stearin from Various Refineries Across China. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 869-877.	1.9	8
68	Composition and Structure of Single Cell Oil Produced by <i>Schizochytrium limacinum</i> SR31. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1337-1346.	1.9	27
69	Influence of lipase under ultrasonic microwave assisted extraction on changes of triacylglycerol distribution and melting profiles during lipolysis of milk fat. RSC Advances, 2016, 6, 100857-100865.	3.6	4
70	Effects of microbial lipases on hydrolyzed milk fat at different time intervals in flavour development and oxidative stability. Journal of Food Science and Technology, 2016, 53, 1035-1046.	2.8	27
71	Degradation of AFB1 in aqueous medium by electron beam irradiation: Kinetics, pathway and toxicology. Food Control, 2016, 66, 151-157.	5.5	34
72	Analysis of phospholipids in Schizochytrium sp. S31 by using UPLC-Q-TOF-MS. Analytical Methods, 2016, 8, 763-770.	2.7	17

#	Article	IF	CITATIONS
73	Combined urea-thin layer chromatography and silver nitrate-thin layer chromatography for micro separation and determination of hard-to-detect branched chain fatty acids in natural lipids. Journal of Chromatography A, 2015, 1425, 293-301.	3.7	11
74	Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight MS for Identification of Electron Beam from Accelerator Degradation Products of Aflatoxin B1. Applied Biochemistry and Biotechnology, 2015, 175, 1548-1556.	2.9	17
75	Effect of frying conditions on fatty acid profile and total polar materials via viscosity. Journal of Food Engineering, 2015, 166, 349-355.	5.2	44
76	<i>Trans</i> -free Shortenings through the Interesterification of Rice Bran Stearin, Fully Hydrogenated Soybean Oil and Coconut Oil. International Journal of Food Engineering, 2015, 11, 467-477.	1.5	30
77	A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresource Technology, 2015, 177, 51-57.	9.6	101
78	Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresource Technology, 2015, 177, 134-140.	9.6	75
79	Production of yellow wine from <i><scp>C</scp>amellia <scp>O</scp>leifera</i> meal pretreated by mixed cultured solidâ€state fermentation. International Journal of Food Science and Technology, 2014, 49, 1715-1721.	2.7	7
80	Effects of ultrasound-assisted extraction on yield of flaxseed oil, β- and γ- tocopherols optimized by orthogonal array design. European Journal of Lipid Science and Technology, 2014, 116, 1412-1420.	1.5	9
81	Scaffold/matrix attachment regions from <scp>CHO</scp> cell chromosome enhanced the stable transfection efficiency and the expression of transgene in <scp>CHO</scp> cells. Biotechnology and Applied Biochemistry, 2014, 61, 510-516.	3.1	21
82	Efficiency and safety evaluation of photodegradation of <scp>A</scp> flatoxin <scp>B</scp> ₁ on peanut surface. International Journal of Food Science and Technology, 2013, 48, 2474-2479.	2.7	15
83	<i>In vitro</i> toxicity of aflatoxin B ₁ and its photodegradation products in HepG2 cells. Journal of Applied Toxicology, 2012, 32, 276-281.	2.8	37
84	Photodegradation of Aflatoxin B1 in peanut oil. European Food Research and Technology, 2011, 232, 843-849.	3.3	55
85	Degradation of aflatoxin B1 in aqueous medium through UV irradiation. European Food Research and Technology, 2011, 233, 1007-1012.	3.3	21
86	LC–MS and UPLC–Quadrupole Time-of-Flight MS for Identification of Photodegradation Products of Aflatoxin B1. Chromatographia, 2010, 71, 107-112.	1.3	39
87	Photodegradation kinetics and byproducts identification of the Aflatoxin B ₁ in aqueous medium by ultraâ€performance liquid chromatography–quadrupole timeâ€ofâ€flight mass spectrometry. Journal of Mass Spectrometry, 2010, 45, 553-559.	1.6	60
88	2D2D HILICâ€ELSD/UPLCâ€Qâ€TOFâ€MS Method for Acquiring Phospholipid Profiles and the Application in Caenorhabditis elegans. European Journal of Lipid Science and Technology, 0, , 2100075.	1.5	0
89	Microwaveâ€assisted catalytic synthesis of phytosterol esters. International Journal of Food Science and Technology, 0, , .	2.7	4