Scott W Banks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4450309/publications.pdf Version: 2024-02-01

SCOTT W RANKS

#	Article	IF	CITATIONS
1	Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2017, 76, 309-322.	8.2	448
2	Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, 2018, 82, 2705-2715.	8.2	254
3	A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied Energy, 2017, 188, 595-603.	5.1	87
4	Biomass pyrolysis TGA assessment with an international round robin. Fuel, 2020, 276, 118002.	3.4	85
5	Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Processing Technology, 2018, 172, 97-105.	3.7	69
6	Impact of Potassium and Phosphorus in Biomass on the Properties of Fast Pyrolysis Bio-oil. Energy & Fuels, 2016, 30, 8009-8018.	2.5	67
7	Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor. Renewable Energy, 2019, 143, 719-730.	4.3	61
8	Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Processing Technology, 2014, 128, 94-103.	3.7	38
9	Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality. Bioresource Technology, 2013, 129, 335-342.	4.8	36
10	Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions. Fuel, 2020, 275, 118004.	3.4	29
11	Theoretical Analysis of Double Logistic Distributed Activation Energy Model for Thermal Decomposition Kinetics of Solid Fuels. Industrial & Engineering Chemistry Research, 2018, 57, 7817-7825.	1.8	22
12	Comparative Study on Catalytic and Non-Catalytic Pyrolysis of Olive Mill Solid Wastes. Waste and Biomass Valorization, 2018, 9, 301-313.	1.8	21
13	Viscosity of Aged Bio-oils from Fast Pyrolysis of Beech Wood and <i>Miscanthus</i> : Shear Rate and Temperature Dependence. Energy & Fuels, 2016, 30, 4999-5004.	2.5	17
14	The role of catalyst acidity and shape selectivity on products from the catalytic fast pyrolysis of beech wood. Journal of Analytical and Applied Pyrolysis, 2022, 162, 104710.	2.6	16
15	Catalytic fast pyrolysis forÂimproved liquid quality. , 2016, , 391-429.		7
16	Potential of Virginia Mallow as an Energy Feedstock. Waste and Biomass Valorization, 2021, 12, 2375-2388.	1.8	4