Elisabet Selga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4450118/publications.pdf Version: 2024-02-01

FUSARET SELCA

#	Article	IF	CITATIONS
1	Generation of an induced pluripotent stem cell line from a healthy Caucasian male. Stem Cell Research, 2022, 60, 102717.	0.7	1
2	Generation of four induced pluripotent stem cell lines from a family harboring a single nucleotide variant in SCN5A. Stem Cell Research, 2022, 63, 102847.	0.7	2
3	CPVT-Associated Mutation P.C357S-RYR2 Promotes a Gain of Function in Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPS-CM). Biophysical Journal, 2020, 118, 255a.	0.5	1
4	An SCN1B Variant Affects Both Cardiac-Type (NaV1.5) and Brain-Type (NaV1.1) Sodium Currents and Contributes to Complex Concomitant Brain and Cardiac Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 528742.	3.7	13
5	Comparative Study of the Effects of an SCN5A Mutation within a Family Diagnosed with Brugada Syndrome using iPS-CM. Biophysical Journal, 2020, 118, 500a.	0.5	2
6	β-Adrenergic Pathway is Enhanced by Hormone-Induced Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPS-CM). Biophysical Journal, 2019, 116, 383a.	0.5	0
7	Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A. Nutrients, 2019, 11, 1656.	4.1	26
8	Experimental Models of Brugada syndrome. International Journal of Molecular Sciences, 2019, 20, 2123.	4.1	28
9	Cardiac Sodium Current is Severely Impaired in Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Brugada Syndrome Patients. Biophysical Journal, 2019, 116, 390a-391a.	0.5	0
10	Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. Journal of Molecular and Cellular Cardiology, 2018, 114, 10-19.	1.9	47
11	Large Genomic Imbalances in Brugada Syndrome. PLoS ONE, 2016, 11, e0163514.	2.5	23
12	Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS ONE, 2015, 10, e0132888.	2.5	25
13	The smooth muscle-type β1subunit potentiates activation by DiBAC4(3) in recombinant BK channels. Channels, 2014, 8, 95-102.	2.8	1
14	P335Sudden unexplained death in Catalonia: comprehensive genetic analysis in post-mortem samples. Cardiovascular Research, 2014, 103, S61.2-S61.	3.8	1
15	Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Science International, 2014, 245, 30-37.	2.2	44
16	Brugada syndrome and p.E61X_RANGRF. Cardiology Journal, 2014, 21, 121-127.	1.2	13
17	A Missense Mutation in the Sodium Channel β2 Subunit Reveals <i>SCN2B</i> as a New Candidate Gene for Brugada Syndrome. Human Mutation, 2013, 34, 961-966.	2.5	96
18	DiBAC4(3) hits a "sweet spot―for the activation of arterial large-conductance Ca2+-activated potassium channels independently of the β1-subunit. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1471-H1482.	3.2	9

ELISABET SELGA

#	Article	IF	CITATIONS
19	Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia. Channels, 2013, 7, 322-328.	2.8	7
20	A Novel Missense Mutation, 1890T, in the Pore Region of Cardiac Sodium Channel Causes Brugada Syndrome. PLoS ONE, 2013, 8, e53220.	2.5	22
21	Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochemical Pharmacology, 2012, 84, 1581-1591.	4.4	27
22	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	2.2	5
23	UDP-glucuronosyltransferase 1A6 overexpression in breast cancer cells resistant to methotrexate. Biochemical Pharmacology, 2011, 81, 60-70.	4.4	27
24	Underexpression of miR-224 in methotrexate resistant human colon cancer cells. Biochemical Pharmacology, 2011, 82, 1572-1582.	4.4	77
25	Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling. BMC Genomics, 2011, 12, 182.	2.8	8
26	Overexpression of S100A4 in human cancer cell lines resistant to methotrexate. BMC Cancer, 2010, 10, 250.	2.6	25
27	Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Medicine, 2009, 1, 83.	8.2	52
28	Role of Caveolin 1, E-Cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Medical Genomics, 2008, 1, 35.	1.5	50
29	Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: Role in the cell cycle and apoptosis. Biochemical Pharmacology, 2008, 75, 414-426.	4.4	69