List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4449444/publications.pdf Version: 2024-02-01

		36303	23533
152	13,120	51	111
papers	citations	h-index	g-index
155	155	155	12595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	34.4	1,236
2	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	30.8	859
3	Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nature Energy, 2021, 6, 388-397.	39.5	764
4	<i>Operando</i> Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co ₃ O ₄ for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 12087-12095.	13.7	736
5	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	13.7	683
6	Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1903545.	21.0	604
7	Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO ₂ Reduction to Ethylene. Journal of the American Chemical Society, 2020, 142, 2857-2867.	13.7	342
8	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 8691-8696.	13.8	337
9	Atomic‣cale CoO <i>_x</i> Species in Metal–Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	14.9	327
10	Zirconiumâ€Regulationâ€Induced Bifunctionality in 3D Cobalt–Iron Oxide Nanosheets for Overall Water Splitting. Advanced Materials, 2019, 31, e1901439.	21.0	306
11	Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. CheM, 2020, 6, 2974-2993.	11.7	302
12	Tuning the Selective Adsorption Site of Biomass on Co ₃ O ₄ by Ir Single Atoms for Electrosynthesis. Advanced Materials, 2021, 33, e2007056.	21.0	217
13	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie - International Edition, 2020, 59, 19215-19221.	13.8	211
14	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	13.8	204
15	Molecular Design of Polymer Heterojunctions for Efficient Solar–Hydrogen Conversion. Advanced Materials, 2017, 29, 1606198.	21.0	203
16	Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy, 2018, 53, 604-612.	16.0	197
17	Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. Physical Review B, 2004, 70, .	3.2	180
18	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wide‣pectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie - International Edition, 2020, 59, 868-873.	13.8	164

#	Article	IF	CITATIONS
19	Tailoring Competitive Adsorption Sites by Oxygenâ€Vacancy on Cobalt Oxides to Enhance the Electrooxidation of Biomass. Advanced Materials, 2022, 34, e2107185.	21.0	162
20	Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting. Scientific Reports, 2014, 4, 6627.	3.3	160
21	Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental, 2019, 255, 117764.	20.2	151
22	A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries. Joule, 2018, 2, 2364-2380.	24.0	139
23	Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nature Communications, 2019, 10, 3755.	12.8	139
24	In situ evolution of highly dispersed amorphous CoO _x clusters for oxygen evolution reaction. Nanoscale, 2017, 9, 11969-11975.	5.6	138
25	Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nature Communications, 2020, 11, 3376.	12.8	122
26	The Role of the Copper Oxidation State in the Electrocatalytic Reduction of CO ₂ into Valuable Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1485-1492.	6.7	121
27	Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nature Communications, 2020, 11, 1984.	12.8	120
28	Operando Spectral and Electrochemical Investigation into the Heterophase Stimulated Active Species Transformation in Transition-Metal Sulfides for Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2020, 10, 1855-1864.	11.2	113
29	Oxygen Vacancy Dependent Magnetism of CeO ₂ Nanoparticles Prepared by Thermal Decomposition Method. Journal of Physical Chemistry C, 2010, 114, 19576-19581.	3.1	105
30	Morphology Manipulation of Copper Nanocrystals and Product Selectivity in the Electrocatalytic Reduction of Carbon Dioxide. ACS Catalysis, 2019, 9, 5217-5222.	11.2	105
31	Enhanced Room-Temperature Ferromagnetism on Co-Doped CeO ₂ Nanoparticles: Mechanism and Electronic and Optical Properties. Journal of Physical Chemistry C, 2014, 118, 27039-27047.	3.1	94
32	Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2017, 352, 491-497.	6.2	92
33	Hierarchically nanostructured NiO-Co3O4 with rich interface defects for the electro-oxidation of 5-hydroxymethylfurfural. Science China Chemistry, 2020, 63, 980-986.	8.2	85
34	Concentration Dependence of Oxygen Vacancy on the Magnetism of CeO ₂ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 8707-8713.	3.1	82
35	Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation. Carbon, 2021, 181, 193-203.	10.3	81
36	In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale, 2013, 5, 1159.	5.6	80

#	Article	IF	CITATIONS
37	Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 431, 134101.	12.7	74
38	Integrated Catalytic Sites for Highly Efficient Electrochemical Oxidation of the Aldehyde and Hydroxyl Groups in 5-Hydroxymethylfurfural. ACS Catalysis, 2022, 12, 4242-4251.	11.2	74
39	Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 14483-14488.	10.3	73
40	A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Applied Catalysis B: Environmental, 2020, 260, 118206.	20.2	72
41	Engineering the coordination geometry of metal–organic complex electrocatalysts for highly enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 805-810.	10.3	69
42	Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution. Small, 2018, 14, e1801756.	10.0	69
43	An integrated cobalt disulfide (CoS ₂) co-catalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 23466-23476.	10.3	68
44	Single-atom nickel terminating sp ² and sp ³ nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chemical Science, 2021, 12, 3633-3643.	7.4	68
45	Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure. ACS Nano, 2018, 12, 7117-7126.	14.6	65
46	Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Physical Chemistry Chemical Physics, 2016, 18, 3846-3853.	2.8	58
47	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	16.0	58
48	Sizeâ€Controlled <i>Exâ€nihilo</i> Ferromagnetism in Capped CdSe Quantum Dots. Advanced Materials, 2008, 20, 1656-1660.	21.0	57
49	Defect Structure Guided Room Temperature Ferromagnetism of Y-Doped CeO ₂ Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 26359-26367.	3.1	57
50	Nanoflaky MnO ₂ /functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation. Nanoscale, 2015, 7, 1725-1735.	5.6	57
51	Nanogap Engineered Plasmonâ€Enhancement in Photocatalytic Solar Hydrogen Conversion. Advanced Materials Interfaces, 2015, 2, 1500280.	3.7	55
52	Evolution of Visible Photocatalytic Properties of Cu-Doped CeO ₂ Nanoparticles: Role of Cu ²⁺ -Mediated Oxygen Vacancies and the Mixed-Valence States of Ce Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 8536-8546.	6.7	55
53	Recent advances in vanadium pentoxide (V ₂ O ₅) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C, 2022, 10, 4019-4071.	5.5	53
54	Nbâ€Doped Hematite Nanorods for Efficient Solar Water Splitting: Electronic Structure Evolution versus Morphology Alteration. ChemNanoMat, 2016, 2, 704-711.	2.8	51

#	Article	IF	CITATIONS
55	Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.		50
56	Activity origin and alkalinity effect of electrocatalytic biomass oxidation on nickel nitride. Journal of Energy Chemistry, 2021, 61, 179-185.	12.9	50
57	Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 2012, 127, 175-181.	20.2	48
58	Towards understanding the electronic structure of Fe-doped CeO2 nanoparticles with X-ray spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 14701.	2.8	48
59	5f Covalency Synergistically Boosting Oxygen Evolution of UCoO ₄ Catalyst. Journal of the American Chemical Society, 2022, 144, 416-423.	13.7	48
60	Activated Ni–OH Bonds in a Catalyst Facilitates the Nucleophile Oxidation Reaction. Advanced Materials, 2022, 34, e2105320.	21.0	47
61	Bifunctional cobalt phosphide nanoparticles with convertible surface structure for efficient electrocatalytic water splitting in alkaline solution. Journal of Catalysis, 2019, 371, 262-269.	6.2	45
62	Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation. Journal of Materials Science and Technology, 2022, 98, 160-168.	10.7	45
63	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	14.9	45
64	In Situ/Operando Xâ€ray Spectroscopies for Advanced Investigation of Energy Materials. Chemistry - A European Journal, 2018, 24, 18356-18373.	3.3	43
65	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	6.3	43
66	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
67	Electronic properties of free-standing TiO ₂ nanotube arrays fabricated by electrochemical anodization. Physical Chemistry Chemical Physics, 2015, 17, 22064-22071.	2.8	42
68	Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5â€Hydroxymethylfurfural. Angewandte Chemie, 2020, 132, 19377-19383.	2.0	41
69	Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance. Applied Catalysis B: Environmental, 2021, 297, 120484.	20.2	41
70	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wide‧pectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie, 2020, 132, 878-883.	2.0	40
71	Singleâ€Metal Atoms and Ultra‣mall Clusters Manipulating Charge Carrier Migration in Polymeric Perylene Diimide for Efficient Photocatalytic Oxygen Production. Advanced Energy Materials, 2022, 12,	19.5	40
72	Synergistic-Effect-Controlled CoTe ₂ /Carbon Nanotube Hybrid Material for Efficient Water Oxidation. Journal of Physical Chemistry C, 2016, 120, 28093-28099.	3.1	39

CHUNG-LI DONG

#	Article	IF	CITATIONS
73	Mechanism of Electrochemical Deposition and Coloration of Electrochromic V2O5 Nano Thin Films: an In Situ X-Ray Spectroscopy Study. Nanoscale Research Letters, 2015, 10, 387.	5.7	38
74	Fe ²⁺ â€Induced In Situ Intercalation and Cation Exsolution of Co ₈₀ Fe ₂₀ (OH)(OCH ₃) with Rich Vacancies for Boosting Oxygen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009245.	14.9	38
75	Preferential Cation Vacancies in Perovskite Hydroxide for the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 8827-8832.	2.0	37
76	Critical Factors Controlling Superoxide Reactions in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 1355-1363.	17.4	37
77	Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Science Bulletin, 2019, 64, 1262-1271.	9.0	36
78	Atomic and electronic aspects of the coloration mechanism of gasochromic Pt/Mo-modified V ₂ O ₅ smart films: an in situ X-ray spectroscopic study. Physical Chemistry Chemical Physics, 2016, 18, 5203-5210.	2.8	33
79	Activating KlÃ u i-Type Organometallic Precursors at Metal Oxide Surfaces for Enhanced Solar Water Oxidation. ACS Energy Letters, 2018, 3, 1613-1619.	17.4	33
80	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	8.6	33
81	Electrochemical and in situ X-ray spectroscopic studies of MnO ₂ /reduced graphene oxide nanocomposites as a supercapacitor. Physical Chemistry Chemical Physics, 2016, 18, 18705-18718.	2.8	32
82	Tuning the Electrical and Thermoelectric Properties of N Ion Implanted SrTiO3 Thin Films and Their Conduction Mechanisms. Scientific Reports, 2019, 9, 14486.	3.3	30
83	Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation. Solar Rrl, 2020, 4, 1900349.	5.8	30
84	Tandem Structure of QD Cosensitized TiO ₂ Nanorod Arrays for Solar Light Driven Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2016, 4, 210-218.	6.7	29
85	In Situ/Operando Capturing Unusual Ir ⁶⁺ Facilitating Ultrafast Electrocatalytic Water Oxidation. Advanced Functional Materials, 2021, 31, 2104746.	14.9	29
86	Boosting photocatalytic hydrogen production by creating isotype heterojunctions and single-atom active sites in highly-crystallized carbon nitride. Science Bulletin, 2022, 67, 520-528.	9.0	29
87	Bias-Enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH ₄ Plasma and Their Enhanced Plasma Illumination Properties. ACS Applied Materials & Interfaces, 2014, 6, 10566-10575.	8.0	26
88	Behind the color switching in gasochromic VO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 3482-3489.	2.8	26
89	The Electro-Deposition/Dissolution of CuSO ₄ Aqueous Electrolyte Investigated by <i>In Situ</i> Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 780-787.	2.6	26
90	Characterization of gasochromic vanadium oxides films by X-ray absorption spectroscopy. Thin Solid Films, 2013, 544, 461-465.	1.8	25

#	Article	IF	CITATIONS
91	Plasmon-Induced Visible-Light Photocatalytic Activity of Au Nanoparticle-Decorated Hollow Mesoporous TiO ₂ : A View by X-ray Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 6955-6962.	3.1	25
92	Enhancement of Ferromagnetism in CeO ₂ Nanoparticles by Nonmagnetic Cr ³⁺ Doping. Journal of Physical Chemistry C, 2012, 116, 26570-26576.	3.1	24
93	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	2.0	24
94	<i>In Situ</i> Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catalysis, 2022, 12, 3138-3148.	11.2	24
95	Structurally ordered highâ€entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat, 2023, 4, .	10.7	23
96	Deposition and Characterization of Diamond-Like Carbon Thin Films by Electro-Deposition Technique Using Organic Liquid. Journal of Materials Research, 2004, 19, 1126-1132.	2.6	22
97	Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 5400-5407.	8.0	22
98	Structural, magnetic and electronic properties of iron doped barium strontium titanate. RSC Advances, 2016, 6, 112363-112369.	3.6	21
99	Visible light-induced electronic structure modulation of Nb- and Ta-doped \hat{I}_{\pm} -Fe2O3 nanorods for effective photoelectrochemical water splitting. Nanotechnology, 2018, 29, 064002.	2.6	21
100	Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202812119.	7.1	21
101	Local geometric and electronic structures of gasochromic VOx films. Physical Chemistry Chemical Physics, 2014, 16, 4699.	2.8	19
102	Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts. Advanced Functional Materials, 2019, 29, 1905005.	14.9	18
103	Electronic and atomic structure of TiO2 anatase spines on sea-urchin-like microspheres by X-ray absorption spectroscopy. Applied Surface Science, 2020, 502, 144297.	6.1	18
104	Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li–CO ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 6156-6167.	8.0	18
105	X-ray Absorption Spectroscopic Study on Interfacial Electronic Properties of FeOOH/Reduced Graphene Oxide for Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 3186-3194.	6.7	17
106	Effect of Fe ion implantation on the thermoelectric properties and electronic structures of CoSb ₃ thin films. RSC Advances, 2019, 9, 36113-36122.	3.6	17
107	Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition. Journal of Crystal Growth, 2011, 326, 212-217.	1.5	16
108	Transparent free-standing film of 1-D rutile/anatase TiO ₂ nanorod arrays by a one-step hydrothermal process. Chemical Communications, 2015, 51, 6361-6364.	4.1	15

CHUNG-LI DONG

#	Article	IF	CITATIONS
109	Quinary Defect-Rich Ultrathin Bimetal Hydroxide Nanosheets for Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 44018-44025.	8.0	15
110	Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction. Science China Chemistry, 2020, 63, 1684-1693.	8.2	15
111	Regulating Crystal Structure and Atomic Arrangement in Single-Component Metal Oxides through Electrochemical Conversion for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 57038-57046.	8.0	15
112	In Situ Observation of the Insulator-To-Metal Transition and Nonequilibrium Phase Transition for Li _{1–<i>x</i>} CoO ₂ Films with Preferred (003) Orientation Nanorods. ACS Applied Materials & Interfaces, 2019, 11, 33043-33053.	8.0	14
113	Identifying the crystal and electronic structure evolution in tri omponent transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat, 2019, 1, e12005.	11.9	14
114	Trends in reactivity of electrodeposited 3d transition metals on gold revealed byoperandosoft x-ray absorption spectroscopy during water splitting. Journal Physics D: Applied Physics, 2017, 50, 024002.	2.8	12
115	A review of energy materials studied by in situ/operando synchrotron x-ray spectro-microscopy. Journal Physics D: Applied Physics, 2021, 54, 343001.	2.8	12
116	Operando X-ray spectroscopic observations of modulations of local atomic and electronic structures of color switching smart film. Physical Chemistry Chemical Physics, 2017, 19, 14224-14229.	2.8	11
117	NiCo2O4/graphene quantum dots (GQDs) for use in efficient electrochemical energy devices: An electrochemical and X-ray absorption spectroscopic investigation. Catalysis Today, 2020, 348, 290-298.	4.4	11
118	<i>A</i> '– <i>B</i> Intersite Cooperation-Enhanced Water Splitting in Quadruple Perovskite Oxide CaCu ₃ Ir ₄ O ₁₂ . Chemistry of Materials, 2021, 33, 9295-9305.	6.7	11
119	Effects of oxygen partial pressure on structural and gasochromic properties of sputtered VOx thin films. Thin Solid Films, 2013, 544, 448-451.	1.8	10
120	Understanding and Tuning Electronic Structure in Modified Ceria Nanocrystals by Defect Engineering. Langmuir, 2014, 30, 10430-10439.	3.5	10
121	Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric performance. Physical Chemistry Chemical Physics, 2017, 19, 24886-24895.	2.8	10
122	In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020, 2020, 5487237.	5.7	10
123	Soft X-ray absorption spectroscopic investigation of MnO2/graphene nanocomposites used in supercapacitor. Catalysis Today, 2022, 388-389, 63-69.	4.4	9
124	Structure and Transport Properties of Nickel-Implanted CoSb ₃ Skutterudite Thin Films Synthesized via Pulsed Laser Deposition. ACS Applied Energy Materials, 2018, 1, 5879-5886.	5.1	8
125	Origin of intense blue-green emission in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sr</mml:mi><mml:mi>Timathvariant="normal">O</mml:mi><mml:mn>3</mml:mn></mml:mrow> thin films with implanted nitrogen ions: An investigation by synchrotron-based experimental techniques.</mmi:math 	i> < mml:m: 3.2	sub> <mml:m 8</mml:m
126	Physical Review 6, 2021, 103, . Electronic structures associated with enhanced photocatalytic activity in nanogap-engineered g-C3N4/Ag@SiO2 hybrid nanostructures. Applied Surface Science, 2020, 514, 145907.	6.1	7

#	Article	IF	CITATIONS
127	Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets. Surface and Coatings Technology, 2013, 231, 594-598.	4.8	6
128	Influence of halide ions on the structure and properties of copper indium sulphide quantum dots. Chemical Communications, 2020, 56, 3341-3344.	4.1	6
129	Significant role of substrate temperature on the morphology, electronic structure and thermoelectric properties of SrTiO3 films deposited by pulsed laser deposition. Surface and Coatings Technology, 2021, 407, 126740.	4.8	6
130	Enhancing Solarâ€Driven Water Splitting with Surfaceâ€Engineered Nanostructures. Solar Rrl, 2018, 3, 1800285.	5.8	5
131	Improved photocatalytic efficacy of TiO2 open nanotube arrays: A view by XAS. Applied Surface Science, 2020, 527, 146844.	6.1	5
132	Photo generated charge transport studies of defects-induced shuttlecock-shaped ZnO/Ag hybrid nanostructures. Nanotechnology, 2021, 32, 305708.	2.6	5
133	Structure and electronic states of single-crystal Fe1â^'xNixOy (0⩽x⩽1) thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1630-1634.	2.1	4
134	A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects <i>via</i> the oriented attachment growth mechanism. Journal of Materials Chemistry A, 2018, 6, 10663-10673.	10.3	4
135	Au-BINOL Hybrid Nanocatalysts: Insights into the Structure-Based Enhancement of Catalytic and Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 5479-5489.	3.7	4
136	AuPd Nanoicosahedra: Atomic-Level Surface Modulation for Optimization of Electrocatalytic and Photocatalytic Energy Conversion. ACS Applied Energy Materials, 2021, 4, 2652-2662.	5.1	4
137	Sequential tunability of red and white light emissions in Sm-activated ZnO phosphors by up- and downconversion mechanisms. Journal of Applied Physics, 2021, 129, .	2.5	4
138	Soft-x-ray spectroscopy probes nanomaterial-based devices. SPIE Newsroom, 2007, , .	0.1	4
139	Extended Graphite Supported Flower-like MnO2 as Bifunctional Materials for Supercapacitors and Glucose Sensing. Nanomaterials, 2021, 11, 2881.	4.1	4
140	Magnetic and electronic properties of CeCo ₂ studied by synchrotron radiation. Physica Status Solidi (B): Basic Research, 2007, 244, 4526-4529.	1.5	3
141	Thickness-Dependent Electronic Structure of Intermetallic CeCo2 Nanothin Films Studied by X-ray Absorption Spectroscopy. Langmuir, 2009, 25, 7568-7572.	3.5	3
142	Defects assisted structural and electrical properties of Ar ion irradiated TiO2/SrTiO3 bilayer. Materials Letters, 2021, 282, 128880.	2.6	3
143	Controlled Magnetic Isolation and Decoupling of Perpendicular FePt Films by Capping Ultrathin Cu(002) Nano-Islands. Journal of Composites Science, 2021, 5, 140.	3.0	3
144	Formation of FePt–MgO Nanocomposite Films at Reduced Temperature. Journal of Composites Science, 2022, 6, 158.	3.0	3

CHUNG-LI DONG

#	Article	IF	CITATIONS
145	Role of Interfacial Defects in Photoelectrochemical Properties of BiVO4 Coated on ZnO Nanodendrites: X-ray Spectroscopic and Microscopic Investigation. ACS Applied Materials & Interfaces, 2021, 13, 41524-41536.	8.0	2
146	Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie, 0, , .	2.0	2
147	Electronic Structures of Hexagonal Manganites HoMnO3 Studied by X-ray Absorption Near-edge Structure. AIP Conference Proceedings, 2007, , .	0.4	1
148	Understanding the role of structural distortions on the transport properties of Ar ion irradiated SrTiO3 thin films: X-ray absorption investigation. Journal of Applied Physics, 2021, 130, .	2.5	1
149	On the local atomic structure for swift coloration of chromogenic thin film. Applied Surface Science, 2022, 593, 153351.	6.1	1
150	Synthesis of hybrid diamond films via two-step microwave enhanced chemical vapor deposition process for enhancing the electron field emission properties. Diamond and Related Materials, 2016, 63, 211-217.	3.9	0
151	X-Ray Spectroscopic Analysis of Electronic Properties of One-Dimensional Nanostructured Materials. Nanostructure Science and Technology, 2019, , 1-29.	0.1	0
152	Enhancement of thermoelectric performance of n-type In2(Te0.94Se0.06)3 thin films by electronic excitations. Applied Surface Science, 2020, 505, 144115.	6.1	0