
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4449012/publications.pdf Version: 2024-02-01

LUEANC HE

#	Article	IF	CITATIONS
1	The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior. Cell Reports, 2022, 38, 110506.	2.9	13
2	Environmental enrichment leads to behavioral circadian shifts enhancing brain-wide functional connectivity between sensory cortices and eliciting increased hippocampal spiking. NeuroImage, 2022, 252, 119016.	2.1	4
3	Stimulus-Specific Adaptation in Auditory Thalamus Is Modulated by the Thalamic Reticular Nucleus. ACS Chemical Neuroscience, 2021, 12, 1688-1697.	1.7	2
4	Reduced Firing of Nucleus Accumbens Parvalbumin Interneurons Impairs Risk Avoidance in DISC1 Transgenic Mice. Neuroscience Bulletin, 2021, 37, 1325-1338.	1.5	5
5	Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Frontiers in Systems Neuroscience, 2021, 15, 655172.	1.2	5
6	Study of neurovascular coupling by using mesoscopic and microscopic imaging. IScience, 2021, 24, 103176.	1.9	3
7	The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin. ELife, 2021, 10, .	2.8	16
8	Structural and Functional Hippocampal Correlations in Environmental Enrichment During the Adolescent to Adulthood Transition in Mice. Frontiers in Systems Neuroscience, 2021, 15, 807297.	1.2	5
9	Visuoauditory Associative Memory Established with Cholecystokinin Under Anesthesia Is Retrieved in Behavioral Contexts. Journal of Neuroscience, 2020, 40, 2025-2037.	1.7	14
10	Enhancement of Neuronal Activity in the Auditory Thalamus After Simulated Slow-Wave Oscillation. Neuroscience Bulletin, 2020, 36, 806-810.	1.5	1
11	Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior. PLoS Biology, 2019, 17, e3000417.	2.6	26
12	Identification and synthesis of low-molecular weight cholecystokinin B receptor (CCKBR) agonists as mediators of long-term synaptic potentiation. Medicinal Chemistry Research, 2019, 28, 387-393.	1.1	1
13	Cholecystokinin release triggered by NMDA receptors produces LTP and sound–sound associative memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6397-6406.	3.3	38
14	Core–Shell–Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Letters, 2018, 18, 948-956.	4.5	130
15	A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning. Neuron, 2018, 97, 406-417.e4.	3.8	71
16	Long term potentiation, but not depression, in interlamellar hippocampus CA1. Scientific Reports, 2018, 8, 5187.	1.6	12
17	Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials, 2017, 142, 136-148.	5.7	74
18	Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6972-E6981.	3.3	80

#	Article	lF	CITATIONS
19	Multiplexed Optogenetic Stimulation of Neurons with Spectrumâ€Selective Upconversion Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700446.	3.9	58
20	5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons. Scientific Reports, 2016, 6, 20033.	1.6	17
21	Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study. Scientific Reports, 2016, 6, 35905.	1.6	33
22	Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron. Frontiers in Computational Neuroscience, 2015, 9, 59.	1.2	4
23	Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials, 2015, 65, 76-85.	5.7	65
24	Stimulus-Specific Adaptation at the Synapse Level In Vitro. PLoS ONE, 2014, 9, e114537.	1.1	8
25	Across-ear stimulus-specific adaptation in the auditory cortex. Frontiers in Neural Circuits, 2014, 8, 89.	1.4	7
26	Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Research, 2014, 24, 307-330.	5.7	29
27	Time course of the dependence of associative memory retrieval on the entorhinal cortex. Neurobiology of Learning and Memory, 2014, 116, 155-161.	1.0	3
28	Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 107.	2.4	13
29	A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats. PLoS ONE, 2014, 9, e103764.	1.1	14
30	Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 2013, 10, 84-89.	9.0	184
31	Encoding and Retrieval of Artificial Visuoauditory Memory Traces in the Auditory Cortex Requires the Entorhinal Cortex. Journal of Neuroscience, 2013, 33, 9963-9974.	1.7	24
32	Cortically Controlled Electrical Stimulation for Locomotion of the Spinal Cord Injured. Biosystems and Biorobotics, 2013, , 35-40.	0.2	4
33	Cross auditoryâ€spatial learning in earlyâ€blind individuals. Human Brain Mapping, 2012, 33, 2714-2727.	1.9	18
34	Intrinsic Connections of the Auditory Cortex. , 2011, , 133-145.		7
35	Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model. Journal of Physiology (Paris), 2010, 104, 160-166.	2.1	8

#	Article	IF	CITATIONS
37	Slow Recovery From Excitation of Thalamic Reticular Nucleus Neurons. Journal of Neurophysiology, 2009, 101, 980-987.	0.9	31
38	Entrainment of Slow Oscillations of Auditory Thalamic Neurons by Repetitive Sound Stimuli. Journal of Neuroscience, 2009, 29, 6013-6021.	1.7	39
39	Change detection by thalamic reticular neurons. Nature Neuroscience, 2009, 12, 1165-1170.	7.1	142
40	Corticofugal Projection Inhibits the Auditory Thalamus Through the Thalamic Reticular Nucleus. Journal of Neurophysiology, 2008, 99, 2938-2945.	0.9	33
41	Spindle oscillations are generated in the dorsal thalamus and modulated by the thalamic reticular nucleus. Nature Precedings, 2008, , .	0.1	0
42	Corticothalamic synchronization leads to <i>c-fos</i> expression in the auditory thalamus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11802-11807.	3.3	22
43	Corticofugal modulation of acoustically induced Fos expression in the rat auditory pathway. Journal of Comparative Neurology, 2007, 501, 509-525.	0.9	22
44	Corticofugal modulation of the auditory thalamic reticular nucleus of the guinea pig. Journal of Physiology, 2007, 585, 15-28.	1.3	13
45	Action of GLP-1 (7-36) amide and exendin-4 on Suncus murinus (house musk shrew) isolated ileum. European Journal of Pharmacology, 2007, 566, 185-191.	1.7	8
46	The parameters of the stochastic leaky integrate-and-fire neuronal model. Journal of Computational Neuroscience, 2006, 21, 211-223.	0.6	57
47	Corticofugal Gating of Auditory Information in the Thalamus: An In Vivo Intracellular Recording Study. Journal of Neuroscience, 2004, 24, 3060-3069.	1.7	79
48	In vivointracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. Journal of Physiology, 2004, 560, 191-205.	1.3	40
49	Effects of cortical stimulation on auditory-responsive thalamic neurones in anaesthetized guinea pigs. Journal of Physiology, 2004, 560, 207-217.	1.3	28
50	Structural stability and reliability of the Swedish occupational fatigue inventory among Chinese VDT workers. Applied Ergonomics, 2004, 35, 233-241.	1.7	35
51	Thalamocortical and Corticothalamic Interaction in the Auditory System. Neuroembryology and Aging, 2004, 3, 239-248.	0.1	2
52	Corticofugal modulation of the auditory thalamus. Experimental Brain Research, 2003, 153, 579-590.	0.7	64
53	An in vivo intracellular study of auditory thalamic neurons. Thalamus & Related Systems, 2003, 2, 253.	0.5	3
54	Slow Oscillation in Non-Lemniscal Auditory Thalamus. Journal of Neuroscience, 2003, 23, 8281-8290.	1.7	48

#	Article	IF	CITATIONS
55	Corticofugal Modulation on Both on andoff Responses in the Nonlemniscal Auditory Thalamus of the Guinea Pig. Journal of Neurophysiology, 2003, 89, 367-381.	0.9	53
56	off Responses in the Auditory Thalamus of the Guinea Pig. Journal of Neurophysiology, 2002, 88, 2377-2386.	0.9	72
57	Differential Distribution of Burst and Single-Spike Responses in Auditory Thalamus. Journal of Neurophysiology, 2002, 88, 2152-2156.	0.9	59
58	Modulatory Effect of Cortical Activation on the Lemniscal Auditory Thalamus of the Guinea Pig. Journal of Neurophysiology, 2002, 88, 1040-1050.	0.9	49
59	ON and OFF Pathways Segregated at the Auditory Thalamus of the Guinea Pig. Journal of Neuroscience, 2001, 21, 8672-8679.	1.7	87
60	Connections of the dorsal zone of cat auditory cortex. , 1998, 400, 334-348.		51
61	Long-latency neurons in auditory cortex involved in temporal integration: theoretical analysis of experimental data. Hearing Research, 1998, 121, 147-160.	0.9	14
62	Modulatory Effects of Regional Cortical Activation on the Onset Responses of the Cat Medial Geniculate Neurons. Journal of Neurophysiology, 1997, 77, 896-908.	0.9	83
63	Temporal Integration and Duration Tuning in the Dorsal Zone of Cat Auditory Cortex. Journal of Neuroscience, 1997, 17, 2615-2625.	1.7	212
64	Exercise-induced changes in R wave amplitude and heart rate in normal subjects. Journal of Electrocardiology, 1995, 28, 99-106.	0.4	8
65	Changes in cardiac rhythm in man during underwater submersion and swimming studied by ECG telemetry. European Journal of Applied Physiology and Occupational Physiology, 1993, 66, 43-48.	1.2	15
66	Changes in carotid blood flow and electrocardiogram in humans during and after walking on a treadmill. European Journal of Applied Physiology and Occupational Physiology, 1993, 67, 486-491.	1.2	9
67	Lower-Limb Neuroprostheses. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 153-180.	0.2	4