Stephanie M Mutchler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4448936/publications.pdf

Version: 2024-02-01

24 papers 680

623188 14 h-index 752256 20 g-index

24 all docs

24 docs citations

times ranked

24

1038 citing authors

#	Article	IF	CITATIONS
1	The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight, 2022, 7, .	2.3	11
2	Effects of amiloride on acetylcholineâ€dependent arterial vasodilation evolve over time in mice on a high salt diet. Physiological Reports, 2022, 10, e15255.	0.7	1
3	Epithelial Sodium Channel and Salt-Sensitive Hypertension. Hypertension, 2021, 77, 759-767.	1.3	62
4	KIM-1-mediated anti-inflammatory activity is preserved by MUC1 induction in the proximal tubule during ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2021, 321, F135-F148.	1.3	8
5	Deletion of the Gamma Subunit of ENaC in Endothelial Cells Does Not Protect against Renal Ischemia Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 10914.	1.8	4
6	Effects of extreme potassium stress on blood pressure and renal tubular sodium transport. American Journal of Physiology - Renal Physiology, 2020, 318, F1341-F1356.	1.3	25
7	Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight, 2020, 5, .	2.3	28
8	New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Current Opinion in Nephrology and Hypertension, 2019, 28, 113-119.	1.0	30
9	Epithelial Sodium Channel (ENaC) in Endothelium Modulates Vascular Reactivity with a High Salt Diet. FASEB Journal, 2019, 33, 827.6.	0.2	O
10	Regulation of ENaC Expression by Paraoxonase 3. FASEB Journal, 2019, 33, 862.9.	0.2	0
10	Regulation of ENaC Expression by Paraoxonase 3. FASEB Journal, 2019, 33, 862.9. Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (γENaC). FASEB Journal, 2019, 33, 748.7.	0.2	0
	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the		
11	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (γENaC). FASEB Journal, 2019, 33, 748.7. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin	0.2	0
11 12	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (γENaC). FASEB Journal, 2019, 33, 748.7. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. Journal of Biological Chemistry, 2018, 293, 10757-10766. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vascular Medicine,	0.2	5
11 12 13	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (γENaC). FASEB Journal, 2019, 33, 748.7. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. Journal of Biological Chemistry, 2018, 293, 10757-10766. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vascular Medicine, 2017, 22, 363-369. Increased myoendothelial feedback is associated with increased connexin37 and ⟨scp⟩IK⟨/scp⟩1 channel expression in mesenteric arteries of dietâ€induced hyperhomocysteinemic mice.	0.2	0 5 17
11 12 13	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (γENaC). FASEB Journal, 2019, 33, 748.7. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. Journal of Biological Chemistry, 2018, 293, 10757-10766. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vascular Medicine, 2017, 22, 363-369. Increased myoendothelial feedback is associated with increased connexin37 and <scp>IK</scp> 1 channel expression in mesenteric arteries of dietâ€induced hyperhomocysteinemic mice. Microcirculation, 2017, 24, e12398. TSP1–CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary	0.2 1.6 0.8	0 5 17 6
11 12 13 14	Phenotyping a Mouse with Vascular Smooth Muscle Specific Deletion of the Gamma Subunit of the Epithelial Sodium Channel (1³ENaC). FASEB Journal, 2019, 33, 748.7. Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the Caenorhabditis elegans degenerin channel's response to shear stress. Journal of Biological Chemistry, 2018, 293, 10757-10766. Regulation of endothelial hemoglobin alpha expression by Kruppel-like factors. Vascular Medicine, 2017, 22, 363-369. Increased myoendothelial feedback is associated with increased connexin37 and ⟨scp⟩IK⟨/scp⟩1 channel expression in mesenteric arteries of dietâ€induced hyperhomocysteinemic mice. Microcirculation, 2017, 24, e12398. TSP1â€"CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovascular Research, 2017, 113, 15-29. Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proceedings of the National Academy of Sciences of the United States	0.2 1.6 0.8 1.0	0 5 17 6 58

#	Article	IF	CITATIONS
19	Structure Guided Chemical Modifications of Propylthiouracil Reveal Novel Small Molecule Inhibitors of Cytochrome b5 Reductase 3 That Increase Nitric Oxide Bioavailability. Journal of Biological Chemistry, 2015, 290, 16861-16872.	1.6	29
20	Loss of CD47 Attenuates Angiotensin II Mediated Hypertension. FASEB Journal, 2015, 29, 1041.7.	0.2	0
21	Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall. Pharmacological Reviews, 2014, 66, 513-569.	7.1	95
22	Hemoglobin \hat{l}_{\pm}/e NOS Coupling at Myoendothelial Junctions Is Required for Nitric Oxide Scavenging During Vasoconstriction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2594-2600.	1.1	72
23	Alpha1-adrenergic-mediated eNOS phosphorylation in intact arteries. Vascular Pharmacology, 2013, 58, 112-117.	1.0	20
24	Loss of Collectrin, an Angiotensin-Converting Enzyme 2 Homolog, Uncouples Endothelial Nitric Oxide Synthase and Causes Hypertension and Vascular Dysfunction. Circulation, 2013, 128, 1770-1780.	1.6	36