Juan J Del Coz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4448914/publications.pdf

Version: 2024-02-01

430874 434195 1,046 45 18 31 citations h-index g-index papers 47 47 47 1010 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Binary relevance efficacy for multilabel classification. Progress in Artificial Intelligence, 2012, 1, 303-313.	2.4	155
2	Dependent binary relevance models for multi-label classification. Pattern Recognition, 2014, 47, 1494-1508.	8.1	120
3	A Review on Quantification Learning. ACM Computing Surveys, 2018, 50, 1-40.	23.0	62
4	The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science and Technology, 2001, 12, 370-381.	15.1	58
5	Quantification-oriented learning based on reliable classifiers. Pattern Recognition, 2015, 48, 591-604.	8.1	48
6	Automatic plankton quantification using deep features. Journal of Plankton Research, 2019, 41, 449-463.	1.8	45
7	Validation methods for plankton image classification systems. Limnology and Oceanography: Methods, 2017, 15, 221-237.	2.0	39
8	Dynamic ensemble selection for quantification tasks. Information Fusion, 2019, 45, 1-15.	19.1	39
9	Using ensembles for problems with characterizable changes in data distribution: A case study on quantification. Information Fusion, 2017, 34, 87-100.	19.1	38
10	Development of a distributive control scheme for fluorescent lighting based on LonWorks technology. IEEE Transactions on Industrial Electronics, 2000, 47, 1253-1262.	7.9	34
11	On the study of nearest neighbor algorithms for prevalence estimation in binary problems. Pattern Recognition, 2013, 46, 472-482.	8.1	34
12	On the Problem of Error Propagation in Classifier Chains for Multi-label Classification. Studies in Classification, Data Analysis, and Knowledge Organization, 2014, , 163-170.	0.2	32
13	Clustering people according to their preference criteria. Expert Systems With Applications, 2008, 34, 1274-1284.	7.6	30
14	Feature subset selection for learning preferences. , 2004, , .		28
15	On the prediction of Hodgkin lymphoma treatment response. Clinical and Translational Oncology, 2015, 17, 612-619.	2.4	28
16	Enhancing directed binary trees for multi-class classification. Information Sciences, 2013, 223, 42-55.	6.9	22
17	Artificial intelligence techniques point out differences in classification performance between light and standard bovine carcasses. Meat Science, 2003, 64, 249-258.	5.5	21
18	How to learn consumer preferences from the analysis of sensory data by means of support vector machines (SVM). Trends in Food Science and Technology, 2007, 18, 20-28.	15.1	20

#	Article	IF	Citations
19	Why is quantification an interesting learning problem?. Progress in Artificial Intelligence, 2017, 6, 53-58.	2.4	20
20	Multiclass Support Vector Machines With Example-Dependent Costs Applied to Plankton Biomass Estimation. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1901-1905.	11.3	18
21	Analysis of clinical prognostic variables for Chronic Lymphocytic Leukemia decision-making problems. Journal of Biomedical Informatics, 2016, 60, 342-351.	4.3	13
22	Deep Learning and Preference Learning for Object Tracking: A Combined Approach. Neural Processing Letters, 2018, 47, 859-876.	3.2	13
23	Analyzing Sensory Data Using Non-linear Preference Learning with Feature Subset Selection. Lecture Notes in Computer Science, 2004, , 286-297.	1.3	13
24	Learning to Predict One or More Ranks in Ordinal Regression Tasks. Lecture Notes in Computer Science, 2008, , 39-54.	1.3	13
25	Aggregating Independent and Dependent Models to Learn Multi-label Classifiers. Lecture Notes in Computer Science, 2011, , 484-500.	1.3	13
26	Identifying market segments in beef: Breed, slaughter weight and ageing time implications. Meat Science, 2006, 74, 667-675.	5 . 5	12
27	Optimizing different loss functions in multilabel classifications. Progress in Artificial Intelligence, 2015, 3, 107-118.	2.4	9
28	An overview of inference methods in probabilistic classifier chains for multilabel classification. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2016, 6, 215-230.	6.8	9
29	Numerical simulation of bus aerodynamics on several classes of bridge decks. Engineering Applications of Computational Fluid Mechanics, 2017, 11, 435-449.	3.1	9
30	Predicting fertility from seminal traits: Performance of several parametric and non-parametric procedures. Livestock Science, 2013, 155, 137-147.	1.6	6
31	A Kernel Based Method for Discovering Market Segments in Beef Meat. Lecture Notes in Computer Science, 2005, , 462-469.	1.3	6
32	Self-organizing cases to find paradigms. Lecture Notes in Computer Science, 1999, , 527-536.	1.3	5
33	A semi-dependent decomposition approach to learn hierarchical classifiers. Pattern Recognition, 2010, 43, 3795-3804.	8.1	5
34	A family of admissible heuristics for A^* to perform inference in probabilistic classifier chains. Machine Learning, 2017, 106, 143-169.	5.4	5
35	Learning to Quantify: Methods and Applications (LQ 2021). , 2021, , .		4
36	A heuristic in A* for inference in nonlinear Probabilistic Classifier Chains. Knowledge-Based Systems, 2017, 126, 78-90.	7.1	3

#	Article	IF	CITATIONS
37	Soft Margin Trees. Lecture Notes in Computer Science, 2009, , 302-314.	1.3	3
38	Explaining the Genetic Basis of Complex Quantitative Traits through Prediction Models. Journal of Computational Biology, 2010, 17, 1711-1723.	1.6	2
39	Using tensor products to detect unconditional label dependence in multilabel classifications. Information Sciences, 2016, 329, 20-32.	6.9	2
40	Adapting Decision DAGs for Multipartite Ranking. Lecture Notes in Computer Science, 2010, , 115-130.	1.3	2
41	Matching Distributions Algorithms Based on the Earth Mover's Distance for Ordinal Quantification. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1050-1061.	11.3	1
42	Learning data structure from classes: A case study applied to population genetics. Information Sciences, 2012, 193, 22-35.	6.9	0
43	Improving the \$\$epsilon \$\$-approximate algorithm for Probabilistic Classifier Chains. Knowledge and Information Systems, 2020, 62, 2709-2738.	3.2	0
44	Learning the Reasons Why Groups of Consumers Prefer Some Food Products. Lecture Notes in Computer Science, 2006, , 297-309.	1.3	0
45	Prediction and Inheritance of Phenotypes. Lecture Notes in Computer Science, 2009, , 275-284.	1.3	0