
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4448794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generating reaction trees with cascaded variational autoencoders. Journal of Chemical Physics, 2022, 156, 044117.	1.2	5
2	Self-learning entropic population annealing for interpretable materials design. , 2022, 1, 295-302.		3
3	Leveraging algorithmic search in quantum chemical reaction path finding. Physical Chemistry Chemical Physics, 2022, 24, 10305-10310.	1.3	6
4	De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning. Science Advances, 2022, 8, eabj3906.	4.7	14
5	Integrating Incompatible Assay Data Sets with Deep Preference Learning. ACS Medicinal Chemistry Letters, 2022, 13, 70-75.	1.3	2
6	Hybrid algorithm of Bayesian optimization and evolutionary algorithm in crystal structure prediction. Science and Technology of Advanced Materials Methods, 2022, 2, 67-74.	0.4	1
7	Continuous black-box optimization with an Ising machine and random subspace coding. Physical Review Research, 2022, 4, .	1.3	11
8	Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring. Science and Technology of Advanced Materials, 2022, 23, 352-360.	2.8	5
9	Bayesian optimization package: PHYSBO. Computer Physics Communications, 2022, 278, 108405.	3.0	33
10	Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Materials Today Physics, 2021, 16, 100296.	2.9	22
11	Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy. Materials and Design, 2021, 198, 109290.	3.3	43
12	CrySPY: a crystal structure prediction tool accelerated by machine learning. Science and Technology of Advanced Materials Methods, 2021, 1, 87-97.	0.4	5
13	Machine-learning-guided Protein Design. Seibutsu Butsuri, 2021, 61, 177-179.	0.0	0
14	Black-Box Optimization for Automated Discovery. Accounts of Chemical Research, 2021, 54, 1334-1346.	7.6	57
15	First-principles study of electronic structures and elasticity of Al2Fe3Si3. Journal of Physics Condensed Matter, 2021, 33, 195501.	0.7	10
16	Comparative Analysis of Patient-Matched PDOs Revealed a Reduction in OLFM4-Associated Clusters in Metastatic Lesions in Colorectal Cancer. Stem Cell Reports, 2021, 16, 954-967.	2.3	21
17	Fe–Al–Si Thermoelectric (FAST) Materials and Modules: Diffusion Couple and Machine-Learning-Assisted Materials Development. ACS Applied Materials & Interfaces, 2021, 13, 53346-53354.	4.0	10
18	Discovery of polymer electret material via de novo molecule generation and functional group enrichment analysis. Applied Physics Letters, 2021, 118, .	1.5	12

#	Article	IF	CITATIONS
19	Using molecular dynamics simulations to prioritize and understand AI-generated cell penetrating peptides. Scientific Reports, 2021, 11, 10630.	1.6	17
20	Determination of quasi-primary odors by endpoint detection. Scientific Reports, 2021, 11, 12070.	1.6	11
21	Efficient Search for Energetically Favorable Molecular Conformations against Metastable States via Gray-Box Optimization. Journal of Chemical Theory and Computation, 2021, 17, 5419-5427.	2.3	8
22	Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration. ACS Catalysis, 2021, 11, 14615-14624.	5.5	25
23	Molecular generation by Fast Assembly of (Deep)SMILES fragments. Journal of Cheminformatics, 2021, 13, 88.	2.8	9
24	Application of Bayesian Optimization for Pharmaceutical Product Development. Journal of Pharmaceutical Innovation, 2020, 15, 333-343.	1.1	40
25	Efficient query autocompletion with edit distance-based error tolerance. VLDB Journal, 2020, 29, 919-943.	2.7	4
26	NMR-TS: de novo molecule identification from NMR spectra. Science and Technology of Advanced Materials, 2020, 21, 552-561.	2.8	23
27	CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration. Journal of Cheminformatics, 2020, 12, 52.	2.8	19
28	Generating Ampicillin-Level Antimicrobial Peptides with Activity-Aware Generative Adversarial Networks. ACS Omega, 2020, 5, 22847-22851.	1.6	52
29	Optimization of a Heterogeneous Ternary Li ₃ PO ₄ –Li ₃ 8O ₃ –Li ₂ SO ₄ Mixture for Li-lon Conductivity by Machine Learning. Journal of Physical Chemistry C, 2020, 124, 12865-12870.	1.5	40
30	Pushing property limits in materials discovery <i>via</i> boundless objective-free exploration. Chemical Science, 2020, 11, 5959-5968.	3.7	20
31	Can Machine Learning Guide Directed Evolution of Functional Proteins. Biophysical Journal, 2020, 118, 339a.	0.2	0
32	Exploring Successful Parameter Region for Coarse-Grained Simulation of Biomolecules by Bayesian Optimization and Active Learning. Biomolecules, 2020, 10, 482.	1.8	5
33	Artificial Neural Networks Applied as Molecular Wave Function Solvers. Journal of Chemical Theory and Computation, 2020, 16, 3513-3529.	2.3	23
34	Data integration for accelerated materials design via preference learning. New Journal of Physics, 2020, 22, 055001.	1.2	6
35	Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2020, 2, .	1.3	73
36	Bayesian Optimization in Materials Science. Lecture Notes in Physics, 2020, , 413-426.	0.3	4

#	Article	IF	CITATIONS
37	Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquacultural Engineering, 2019, 86, 102000.	1.4	40
38	Efficient recommendation tool of materials by an executable file based on machine learning. Japanese Journal of Applied Physics, 2019, 58, 098001.	0.8	20
39	Enhancing Biomolecular Sampling with Reinforcement Learning: A Tree Search Molecular Dynamics Simulation Method. ACS Omega, 2019, 4, 13853-13862.	1.6	25
40	Li-Ion Conductive Li3PO4-Li3BO3-Li2SO4 Mixture: Prevision through Density Functional Molecular Dynamics and Machine Learning. Bulletin of the Chemical Society of Japan, 2019, 92, 1100-1106.	2.0	13
41	Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science, 2019, 5, 319-326.	5.3	121
42	An interpretable machine learning model for diagnosis of Alzheimer's disease. PeerJ, 2019, 7, e6543.	0.9	39
43	Monte Carlo tree search for materials design and discovery. MRS Communications, 2019, 9, 532-536.	0.8	34
44	Data-driven analysis of electron relaxation times in PbTe-type thermoelectric materials. Science and Technology of Advanced Materials, 2019, 20, 511-520.	2.8	42
45	Machine-Learning-Assisted Development and Theoretical Consideration for the Al ₂ Fe ₃ Si ₃ Thermoelectric Material. ACS Applied Materials & Interfaces, 2019, 11, 11545-11554.	4.0	69
46	evERdock BAI: Machine-learning-guided selection of protein-protein complex structure. Journal of Chemical Physics, 2019, 151, 215104.	1.2	8
47	Efficient construction method for phase diagrams using uncertainty sampling. Physical Review Materials, 2019, 3, .	0.9	26
48	Machine learning accelerates MD-based binding pose prediction between ligands and proteins. Bioinformatics, 2018, 34, 770-778.	1.8	31
49	Structure prediction of boron-doped graphene by machine learning. Journal of Chemical Physics, 2018, 148, 241716.	1.2	46
50	Population-based De Novo Molecule Generation, Using Grammatical Evolution. Chemistry Letters, 2018, 47, 1431-1434.	0.7	63
51	Improving the Accuracy of Proteinâ€Ligand Binding Mode Prediction Using a Molecular Dynamicsâ€Based Pocket Generation Approach. Journal of Computational Chemistry, 2018, 39, 2679-2689.	1.5	9
52	DenseZDD: A Compact and Fast Index for Families of Sets. Algorithms, 2018, 11, 128.	1.2	3
53	Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy. Scientific Reports, 2018, 8, 13548.	1.6	42
54	Fine-grained optimization method for crystal structure prediction. Npj Computational Materials, 2018, 4, .	3.5	20

#	Article	IF	CITATIONS
55	Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins. ACS Synthetic Biology, 2018, 7, 2014-2022.	1.9	110
56	Functional Nanoparticles-Coated Nanomechanical Sensor Arrays for Machine Learning-Based Quantitative Odor Analysis. ACS Sensors, 2018, 3, 1592-1600.	4.0	38
57	Hunting for Organic Molecules with Artificial Intelligence: Molecules Optimized for Desired Excitation Energies. ACS Central Science, 2018, 4, 1126-1133.	5.3	91
58	Multiple Testing Tool to Detect Combinatorial Effects in Biology. Methods in Molecular Biology, 2018, 1807, 83-94.	0.4	2
59	Machine Learning-Based Experimental Design in Materials Science. , 2018, , 65-74.		12
60	Crystal structure prediction accelerated by Bayesian optimization. Physical Review Materials, 2018, 2, .	0.9	94
61	Ultra-Narrowband Wavelength-Selective Thermal Emitter Designed by Bayesian Optimization. The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0135.	0.0	0
62	Designing Nanostructures for Phonon Transport via Bayesian Optimization. Physical Review X, 2017, 7, .	2.8	127
63	MDTS: automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 2017, 18, 498-503.	2.8	52
64	ChemTS: an efficient python library for <i>de novo</i> molecular generation. Science and Technology of Advanced Materials, 2017, 18, 972-976.	2.8	161
65	Machine learning reveals orbital interaction in materials. Science and Technology of Advanced Materials, 2017, 18, 756-765.	2.8	78
66	Transfer Learning to Accelerate Interface Structure Searches. Journal of the Physical Society of Japan, 2017, 86, 123601.	0.7	25
67	RNA inverse folding using Monte Carlo tree search. BMC Bioinformatics, 2017, 18, 468.	1.2	8
68	Acceleration of stable interface structure searching using a kriging approach. Japanese Journal of Applied Physics, 2016, 55, 045502.	0.8	65
69	Machine-learning prediction of the d-band center for metals and bimetals. RSC Advances, 2016, 6, 52587-52595.	1.7	113
70	Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy, 2016, 170, 43-59.	0.8	90
71	LAMPLINK: detection of statistically significant SNP combinations from GWAS data. Bioinformatics, 2016, 32, 3513-3515.	1.8	18
72	Matrix Factorization for Automatic Chemical Mapping from Electron Microscopic Spectral Imaging Datasets. Transactions of the Materials Research Society of Japan, 2016, 41, 333-336.	0.2	7

#	Article	lF	CITATIONS
73	COMBO: An efficient Bayesian optimization library for materials science. Materials Discovery, 2016, 4, 18-21.	3.3	217
74	Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. Physical Review Letters, 2015, 115, 205901.	2.9	343
75	Predictive Approaches for Low-Cost Preventive Medicine Program in Developing Countries. , 2015, , .		5
76	Health Checkup and Telemedical Intervention Program for Preventive Medicine in Developing Countries: Verification Study. Journal of Medical Internet Research, 2015, 17, e2.	2.1	29
77	Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids. Physical Review B, 2014, 89, .	1.1	243
78	Distribution Loss Minimization With Guaranteed Error Bound. IEEE Transactions on Smart Grid, 2014, 5, 102-111.	6.2	101
79	Efficient error-tolerant query autocompletion. Proceedings of the VLDB Endowment, 2013, 6, 373-384.	2.1	31
80	Statistical significance of combinatorial regulations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12996-13001.	3.3	82
81	PoSSuM: a database of similar protein-ligand binding and putative pockets. Nucleic Acids Research, 2012, 40, D541-D548.	6.5	62
82	EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units. European Journal of Human Genetics, 2011, 19, 465-471.	1.4	74
83	Multi-way set enumeration in weight tensors. Machine Learning, 2011, 82, 123-155.	3.4	15
84	SketchSort: Fast All Pairs Similarity Search for Large Databases of Molecular Fingerprints. Molecular Informatics, 2011, 30, 801-807.	1.4	15
85	ROS-DET: robust detector of switching mechanisms in gene expression. Nucleic Acids Research, 2011, 39, e74-e74.	6.5	18
86	Mining Significant Substructure Pairs for Interpreting Polypharmacology in Drug-Target Network. PLoS ONE, 2011, 6, e16999.	1.1	34
87	gBoost: a mathematical programming approach to graph classification and regression. Machine Learning, 2009, 75, 69-89.	3.4	106
88	Protein functional class prediction with a combined graph. Expert Systems With Applications, 2009, 36, 3284-3292.	4.4	23
89	Asymptotic Properties of the Fisher Kernel. Neural Computation, 2004, 16, 115-137.	1.3	25
90	Minimizing the Cross Validation Error to Mix Kernel Matrices of Heterogeneous Biological Data. Neural Processing Letters, 2004, 19, 63-72.	2.0	6

#	Article	IF	CITATIONS
91	Marginalized kernels for RNA sequence data analysis. Genome Informatics, 2002, 13, 112-22.	0.4	10
92	Subspace classifier in the Hilbert space. Pattern Recognition Letters, 1999, 20, 513-519.	2.6	40
93	Sequential fuzzy cluster extraction and its robustness against noise. Systems and Computers in Japan, 1997, 28, 10-17.	0.2	5
94	Extracting straight lines by sequential fuzzy clustering. Pattern Recognition Letters, 1996, 17, 643-649.	2.6	32