List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4448727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brucellosis at the animal/ecosystem/human interface at the beginning of the 21st century. Preventive Veterinary Medicine, 2011, 102, 118-131.	0.7	315
2	Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection. PLoS ONE, 2007, 2, e631.	1.1	281
3	A twoâ€component regulatory system playing a critical role in plant pathogens and endosymbionts is present inBrucella abortusand controls cell invasion and virulence. Molecular Microbiology, 1998, 29, 125-138.	1.2	264
4	Brucella lipopolysaccharide acts as a virulence factor. Current Opinion in Microbiology, 2005, 8, 60-66.	2.3	263
5	Cyclic β-1,2-glucan is a brucella virulence factor required for intracellular survival. Nature Immunology, 2005, 6, 618-625.	7.0	241
6	Rough vaccines in animal brucellosis: Structural and genetic basis and present status. Veterinary Research, 2004, 35, 1-38.	1.1	240
7	What have we learned from brucellosis in the mouse model?. Veterinary Research, 2012, 43, 29.	1.1	210
8	Brucella melitensis: A nasty bug with hidden credentials for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1-3.	3.3	209
9	Brucella evolution and taxonomy. Veterinary Microbiology, 2002, 90, 209-227.	0.8	199
10	Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp International Journal of Systematic Bacteriology, 1998, 48, 759-768.	2.8	190
11	Brucellosis in Sub-Saharan Africa: Current challenges for management, diagnosis and control. Acta Tropica, 2017, 165, 179-193.	0.9	171
12	Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE, 2008, 3, e2760.	1.1	159
13	The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12375-12380.	3.3	151
14	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	2.1	140
15	The Rose Bengal Test in Human Brucellosis: A Neglected Test for the Diagnosis of a Neglected Disease. PLoS Neglected Tropical Diseases, 2011, 5, e950.	1.3	139
16	Brucellosis as an Emerging Threat in Developing Economies: Lessons from Nigeria. PLoS Neglected Tropical Diseases, 2014, 8, e3008.	1.3	117
17	New Antiseptic Peptides To Protect against Endotoxin-Mediated Shock. Antimicrobial Agents and Chemotherapy, 2010, 54, 3817-3824.	1.4	111
18	Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cellular Microbiology, 2006, 8, 1322-1335.	1.1	108

IGNACIO MORIYON

#	Article	IF	CITATIONS
19	Efficacy of Several Serological Tests and Antigens for Diagnosis of Bovine Brucellosis in the Presence of False-Positive Serological Results Due to Yersinia enterocolitica O:9. Vaccine Journal, 2005, 12, 141-151.	2.6	107
20	Characterization of Brucella abortus O-Polysaccharide and Core Lipopolysaccharide Mutants and Demonstration that a Complete Core Is Required for Rough Vaccines To Be Efficient against Brucella abortus and Brucella ovis in the Mouse Model. Infection and Immunity, 2003, 71, 3261-3271.	1.0	106
21	Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infection and Immunity, 1989, 57, 1419-1426.	1.0	104
22	The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. Molecular Microbiology, 1999, 31, 1443-1462.	1.2	103
23	Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochemical Journal, 2005, 385, 135-143.	1.7	101
24	Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cellular Microbiology, 2006, 8, 401-413.	1.1	95
25	Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infection and Immunity, 1987, 55, 609-615.	1.0	95
26	Characterization of Brucella abortus and Brucella melitensis native haptens as outer membrane O-type polysaccharides independent from the smooth lipopolysaccharide. Journal of Bacteriology, 1996, 178, 1070-1079.	1.0	90
27	Brucella abortus and Its Closest Phylogenetic Relative, Ochrobactrum spp., Differ in Outer Membrane Permeability and Cationic Peptide Resistance. Infection and Immunity, 2000, 68, 3210-3218.	1.0	89
28	Brucella-Salmonella lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than are their native Brucella sp. counterparts. Journal of Bacteriology, 1996, 178, 5867-5876.	1.0	84
29	The Lipopolysaccharide of Brucella abortus BvrS/BvrR Mutants Contains Lipid A Modifications and Has Higher Affinity for Bactericidal Cationic Peptides. Journal of Bacteriology, 2005, 187, 5631-5639.	1.0	84
30	International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Brucella. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1173-1175.	0.8	83
31	Extensive Cell Envelope Modulation Is Associated with Virulence inBrucella abortus. Journal of Proteome Research, 2007, 6, 1519-1529.	1.8	82
32	An ELISA with Brucella lipopolysaccharide antigen for the diagnosis of B. melitensis infection in sheep and for the evaluation of serological responses following subcutaneous or conjunctival B. melitensis strain Rev 1 vaccination. Veterinary Microbiology, 1992, 30, 233-241.	0.8	79
33	Generation of the Brucella melitensis ORFeome Version 1.1. Genome Research, 2004, 14, 2201-2206.	2.4	77
34	Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. Journal of Biological Chemistry, 2016, 291, 7727-7741.	1.6	76
35	Regulation of Brucella virulence by the two-component system BvrR/BvrS. Veterinary Microbiology, 2002, 90, 329-339.	0.8	75

36 The Genus Brucella. , 2006, , 315-456.

#	Article	IF	CITATIONS
37	A review of the basis of the immunological diagnosis of ruminant brucellosis. Veterinary Immunology and Immunopathology, 2016, 171, 81-102.	0.5	75
38	A systematic review of current immunological tests for the diagnosis of cattle brucellosis. Preventive Veterinary Medicine, 2018, 151, 57-72.	0.7	75
39	Rationale for the Design of Shortened Derivatives of the NK-lysin-derived Antimicrobial Peptide NK-2 with Improved Activity against Gram-negative Pathogens. Journal of Biological Chemistry, 2007, 282, 14719-14728.	1.6	72
40	Mechanism of interaction of optimized <i>Limulus</i> -derived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis. Biochemical Journal, 2007, 406, 297-307.	1.7	61
41	Rough mutants defective in core and O-polysaccharide synthesis and export induce antibodies reacting in an indirect ELISA with smooth lipopolysaccharide and are less effective than Rev 1 vaccine against Brucella melitensis infection of sheep. Vaccine, 2009, 27, 1741-1749.	1.7	61
42	The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens. PLoS ONE, 2009, 4, e5893.	1.1	60
43	Antibody response to Brucella ovis outer membrane proteins in ovine brucellosis. Infection and Immunity, 1990, 58, 489-494.	1.0	59
44	Evaluation of allergic and serological tests for diagnosing Brucella melitensis infection in sheep. Journal of Clinical Microbiology, 1994, 32, 1835-1840.	1.8	59
45	Comparison of lipopolysaccharide and outer membrane protein-lipopolysaccharide extracts in an enzyme-linked immunosorbent assay for the diagnosis of Brucella ovis infection. Journal of Clinical Microbiology, 1986, 23, 938-942.	1.8	58
46	Structural prerequisites for endotoxic activity in the Limulus test as compared to cytokine production in mononuclear cells. Innate Immunity, 2010, 16, 39-47.	1.1	55
47	Thermodynamic Analysis of the Lipopolysaccharide-Dependent Resistance of Gram-Negative Bacteria against Polymyxin B. Biophysical Journal, 2007, 92, 2796-2805.	0.2	54
48	Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in <i>Brucella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17815-17820.	3.3	53
49	Poor performance of the rapid test for human brucellosis in health facilities in Kenya. PLoS Neglected Tropical Diseases, 2017, 11, e0005508.	1.3	52
50	The outer membranes of Brucella spp. are not barriers to hydrophobic permeants. Journal of Bacteriology, 1993, 175, 5273-5275.	1.0	50
51	Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology (United Kingdom), 1998, 144, 1509-1515.	0.7	50
52	DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers. BMC Microbiology, 2009, 9, 92.	1.3	50
53	Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against <i>Pseudomonas aeruginosa In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 218-228.	1.4	50
54	Biophysical investigations into the interaction of lipopolysaccharide with polymyxins. Thermochimica Acta, 2002, 382, 189-198.	1.2	49

#	Article	IF	CITATIONS
55	Comparison of three serological tests for Brucella ovis infection of rams using different antigenic extracts. Veterinary Record, 1989, 125, 504-508.	0.2	49
56	Evaluation of whole cell and subcellular vaccines against Brucella ovis in rams. Veterinary Immunology and Immunopathology, 1993, 37, 257-270.	0.5	48
57	Performance of Competitive and Indirect Enzyme-Linked Immunosorbent Assays, Gel Immunoprecipitation with Native Hapten Polysaccharide, and Standard Serological Tests in Diagnosis of Sheep Brucellosis. Vaccine Journal, 1999, 6, 269-272.	2.6	45
58	BvrR/BvrS-Controlled Outer Membrane Proteins Omp3a and Omp3b Are Not Essential for <i>Brucella abortus</i> Virulence. Infection and Immunity, 2007, 75, 4867-4874.	1.0	45
59	Yersinia pseudotuberculosis and Yersinia pestis show increased outer membrane permeability to hydrophobic agents which correlates with lipopolysaccharide acyl-chain fluidity. Microbiology (United Kingdom), 1998, 144, 1517-1526.	0.7	43
60	The Acyl Group as the Central Element of the Structural Organization of Antimicrobial Lipopeptide. Journal of the American Chemical Society, 2007, 129, 1022-1023.	6.6	43
61	Brucella abortus Depends on Pyruvate Phosphate Dikinase and Malic Enzyme but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases for Full Virulence in Laboratory Models. Journal of Bacteriology, 2014, 196, 3045-3057.	1.0	43
62	Increases of efficacy as vaccine against Brucella abortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/bvrR and rough wbkA mutants. Vaccine, 2006, 24, 2910-2916.	1.7	41
63	Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides. BMC Microbiology, 2008, 8, 196.	1.3	40
64	Immunization with Brucella melitensis Rev 1 against Brucella ovis infection of rams. Veterinary Microbiology, 1987, 14, 381-392.	0.8	39
65	Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cellular Microbiology, 2006, 8, 197-206.	1.1	39
66	Lipopolysaccharide as a target for brucellosis vaccine design. Microbial Pathogenesis, 2013, 58, 29-34.	1.3	38
67	Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-12.	1.8	37
68	The Epitopic and Structural Characterization of Brucella suis Biovar 2 O-Polysaccharide Demonstrates the Existence of a New M-Negative C-Negative Smooth Brucella Serovar. PLoS ONE, 2013, 8, e53941.	1.1	37
69	Pathogenic Yersinia enterocolitica Strains Increase the Outer Membrane Permeability in Response to Environmental Stimuli by Modulating Lipopolysaccharide Fluidity and Lipid A Structure. Infection and Immunity, 2003, 71, 2014-2021.	1.0	36
70	Proteomics-based confirmation of protein expression and correction of annotation errors in the Brucella abortus genome. BMC Genomics, 2010, 11, 300.	1.2	36
71	<i>Brucella</i> , nitrogen and virulence. Critical Reviews in Microbiology, 2016, 42, 507-525.	2.7	36
72	Enzyme-linked immunosorbent assay with Brucella native hapten polysaccharide and smooth lipopolysaccharide. Journal of Clinical Microbiology, 1988, 26, 2642-2646.	1.8	36

#	Article	IF	CITATIONS
73	Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked Pathogen-Associated Molecular Pattern. PLoS ONE, 2011, 6, e16030.	1.1	36
74	Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells. PLoS Pathogens, 2012, 8, e1002983.	2.1	35
75	Isolation, purification, and partial characterization of Brucella abortus matrix protein. Infection and Immunity, 1983, 39, 394-402.	1.0	35
76	Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Veterinary Research, 2014, 45, 72.	1.1	34
77	<i>Brucella</i> central carbon metabolism: an update. Critical Reviews in Microbiology, 2018, 44, 182-211.	2.7	34
78	Comparative Genomics of Early-Diverging <i>Brucella</i> Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-11.	1.8	33
79	The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microbial Pathogenesis, 2014, 73, 53-59.	1.3	32
80	Comparative performance of lateral flow immunochromatography, iELISA and Rose Bengal tests for the diagnosis of cattle, sheep, goat and swine brucellosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007509.	1.3	28
81	Immunological identity of brucella native hapten, polysaccharide B, and yersinia enterocolitica serotype 9 native hapten. Infection and Immunity, 1982, 38, 778-780.	1.0	28
82	Factors affecting detection of Brucella melitensis by BACTEC NR730, a nonradiometric system for hemocultures. Journal of Clinical Microbiology, 1993, 31, 3200-3203.	1.8	28
83	The interaction of rough and smooth form lipopolysaccharides with polymyxins as studied by titration calorimetry. Thermochimica Acta, 2002, 394, 53-61.	1.2	27
84	Brucella Genital Tropism: What's on the Menu. Frontiers in Microbiology, 2017, 8, 506.	1.5	27
85	Antibody and delayed-type hypersensitivity responses to Ochrobactrum anthropi cytosolic and outer membrane antigens in infections by smooth and rough Brucella spp. Vaccine Journal, 1997, 4, 279-284.	2.6	27
86	Brucellosis seroprevalence in livestock in Uganda from 1998 to 2008: a retrospective study. Tropical Animal Health and Production, 2011, 43, 603-608.	0.5	25
87	Structural studies on the lipopolysaccharide from a rough strain of Ochrobactrum anthropi containing a 2,3-diamino-2,3-dideoxy-d-glucose disaccharide lipid A backbone. Carbohydrate Research, 1998, 306, 283-290.	1.1	24
88	Immunomodulatory properties of <i>Brucella melitensis</i> lipopolysaccharide determinants on mouse dendritic cells <i>in vitro</i> and <i>in vivo</i> . Virulence, 2018, 9, 465-479.	1.8	24
89	Diagnosis and epidemiology of Brucella ovis infection in rams. Small Ruminant Research, 1998, 29, 13-19.	0.6	22
90	Genomic Island 2 Is an Unstable Genetic Element Contributing to <i>Brucella</i> Lipopolysaccharide Spontaneous Smooth-to-Rough Dissociation. Journal of Bacteriology, 2010, 192, 6346-6351.	1.0	22

#	Article	IF	CITATIONS
91	Is Brucella an enteric pathogen?. Nature Reviews Microbiology, 2009, 7, 250-250.	13.6	20
92	Erythritol Availability in Bovine, Murine and Human Models Highlights a Potential Role for the Host Aldose Reductase during Brucella Infection. Frontiers in Microbiology, 2017, 8, 1088.	1.5	20
93	Diagnosis of Brucella ovis infection of rams with an ELISA using protein G as conjugate. Veterinary Record, 1995, 137, 145-147.	0.2	20
94	Properties of the outer membrane of Brucella. Annales De L'Institut Pasteur Microbiologie, 1987, 138, 89-91.	0.8	19
95	Interactions of lipopolysaccharide with lipid membranes, raft models — A solid state NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1731-1742.	1.4	19
96	Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens, 2022, 11, 377.	1.2	19
97	Spontaneous Excision of the O-Polysaccharide <i>wbkA</i> Glycosyltranferase Gene Is a Cause of Dissociation of Smooth to Rough Brucella Colonies. Journal of Bacteriology, 2012, 194, 1860-1867.	1.0	18
98	Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3. Frontiers in Veterinary Science, 2019, 6, 175.	0.9	18
99	Identification and functional analysis of the cyclopropane fatty acid synthase of Brucella abortus. Microbiology (United Kingdom), 2012, 158, 1037-1044.	0.7	17
100	Diagnostic performance of serological tests for swine brucellosis in the presence of false positive serological reactions. Journal of Microbiological Methods, 2015, 111, 57-63.	0.7	17
101	Phenotypic and genotypic characterization of Brucella strains isolated from autochthonous livestock reveals the dominance of B. abortus biovar 3a in Nigeria. Veterinary Microbiology, 2015, 180, 103-108.	0.8	17
102	Prevalence of bovine brucellosis in slaughtered cattle and barriers to better protection of abattoir workers in Ibadan, South-Western Nigeria. Pan African Medical Journal, 2017, 28, 68.	0.3	17
103	The CO2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Veterinary Research, 2018, 49, 85.	1.1	16
104	Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis. Frontiers in Microbiology, 2018, 9, 1092.	1.5	16
105	Brucellagroup 3 outer membrane proteins contain a heat-modifiable protein. FEMS Microbiology Letters, 1993, 112, 141-145.	0.7	15
106	Production of 2,3-dihydroxybenzoic acid by Brucella species. Current Microbiology, 1995, 31, 291-293.	1.0	15
107	Determination of the O-specific polysaccharide structure in the lipopolysaccharide of Ochrobactrum anthropi LMG 3331. Carbohydrate Research, 1996, 287, 123-126.	1.1	15
108	Comparison of polyclonal, monoclonal and protein G peroxidase conjugates in an enzymeâ€linked immunosorbent assay for the diagnosis of <i>Brucella ovis</i> in sheep. Veterinary Record, 1998, 143, 390-394.	0.2	15

#	Article	IF	CITATIONS
109	Identification of new IS711 insertion sites in Brucella abortus field isolates. BMC Microbiology, 2011, 11, 176.	1.3	15
110	Performance of skin tests with allergens from B. melitensis B115 and rough B. abortus mutants for diagnosing swine brucellosis. Veterinary Microbiology, 2014, 168, 161-168.	0.8	14
111	Facing the Human and Animal Brucellosis Conundrums: The Forgotten Lessons. Microorganisms, 2022, 10, 942.	1.6	14
112	Lipopolysaccharides with Acylation Defects Potentiate TLR4 Signaling and Shape T Cell Responses. PLoS ONE, 2013, 8, e55117.	1.1	13
113	Brucella CβG induces a dual pro- and anti-inflammatory response leading to a transient neutrophil recruitment. Virulence, 2015, 6, 19-28.	1.8	13
114	Molecular recognition of lipopolysaccharide by the lantibiotic nisin. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 83-92.	1.4	13
115	Convergent evolution of zoonotic <i>Brucella</i> species toward the selective use of the pentose phosphate pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26374-26381.	3.3	13
116	WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Frontiers in Microbiology, 2018, 9, 2293.	1.5	12
117	Hospital-based evidence on cost-effectiveness of brucellosis diagnostic tests and treatment in Kenyan hospitals. PLoS Neglected Tropical Diseases, 2021, 15, e0008977.	1.3	11
118	Eradication of bovine brucellosis in the Azores, Portugal—Outcome of a 5-year programme (2002–2007) based on test-and-slaughter and RB51 vaccination. Preventive Veterinary Medicine, 2010, 94, 154-157.	0.7	10
119	The prevalence of brucellosis and bovine tuberculosis in ruminants in Sidi Kacem Province, Morocco. PLoS ONE, 2018, 13, e0203360.	1.1	10
120	The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Frontiers in Microbiology, 2018, 9, 641.	1.5	10
121	Effective Antimicrobial and Anti-Endotoxin Activity of Cationic Peptides Based on Lactoferricin: A Biophysical and Microbiological Study. Anti-Infective Agents in Medicinal Chemistry, 2010, 9, 9-22.	0.6	9
122	Deletion of the GI-2 integrase and the wbkA flanking transposase improves the stability of Brucella melitensis Rev 1 vaccine. Veterinary Research, 2013, 44, 105.	1.1	9
123	Vaccine development targeting lipopolysaccharide structure modification. Microbes and Infection, 2018, 20, 455-460.	1.0	9
124	Mutants in the lipopolysaccharide of. Veterinary Research, 2014, 45, 72.	1.1	9
125	Raising the Political Profile of the Neglected Zoonotic Diseases: Three Complementary European Commission-Funded Projects to Streamline Research, Build Capacity and Advocate for Control. PLoS Neglected Tropical Diseases, 2015, 9, e0003505.	1.3	8
126	The characterization of Brucella strains isolated from cattle in Algeria reveals the existence of a B. abortus lineage distinct from European and Sub-Saharan Africa strains. Veterinary Microbiology, 2017, 211, 124-128.	0.8	8

IGNACIO MORIYON

#	Article	IF	CITATIONS
127	Rev1 wbdR tagged vaccines against Brucella ovis. Veterinary Research, 2019, 50, 95.	1.1	8
128	International Committee on Systematic Bacteriology; Subcommittee on the taxonomy of Brucella. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1169-1170.	0.8	7
129	Protection of Brucella abortus RB51 revaccinated cows. Comparative Immunology, Microbiology and Infectious Diseases, 2005, 28, 371-373.	0.7	6
130	Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Veterinary Research, 2020, 51, 92.	1.1	6
131	The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Frontiers in Microbiology, 2021, 12, 614243.	1.5	6
132	Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	6
133	In vitro interactions between lipopolysaccharides and heterologous outer membrane porin proteins. Current Microbiology, 1985, 12, 229-233.	1.0	5
134	Clinical and histological features of brucellin skin test responses in Brucella suis biovar 2 infected pigs. Veterinary Immunology and Immunopathology, 2015, 163, 77-85.	0.5	5
135	Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, 2017, 8, 2657.	1.5	5
136	A methodology for thrips larvae identification using protein profiles obtained by SDS-PAGE. BioControl, 2003, 48, 395-406.	0.9	4
137	Disruption of pyruvate phosphate dikinase in Brucella ovis PA CO2-dependent and independent strains generates attenuation in the mouse model. Veterinary Research, 2020, 51, 101.	1.1	3
138	Efficacy of <i>Brucella abortus</i> S19 and RB51 vaccine strains: A systematic review and metaâ€analysis. Transboundary and Emerging Diseases, 2022, 69, 1670-1673.	1.3	3
139	A Brucella melitensis H38ΔwbkF rough mutant protects against Brucella ovis in rams. Veterinary Research, 2022, 53, 16.	1.1	3
140	DGHM 2012. International Journal of Medical Microbiology, 2012, 302, 3-155.	1.5	2
141	Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model. Frontiers in Microbiology, 2020, 11, 620049.	1.5	2
142	Torulopsis navarrensis sp. nov. A new species of yeast isolated from an acid washed brown soil in the province of Navarra, Spain. Mycopathologia, 1978, 63, 61-63.	1.3	1
143	Comparing Antimicrobial and Membrane Permeabilizing Activity of Peptides Derived from Human Cationic Proteins. , 2006, , 255-257.		0
144	Title is missing!. , 2021, 15, e0008977.		0

144 Title is missing!. , 2021, 15, e0008977.

#	Article	IF	CITATIONS
145	Title is missing!. , 2021, 15, e0008977.		0
146	Title is missing!. , 2021, 15, e0008977.		0
147	Title is missing!. , 2021, 15, e0008977.		0