Bin Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/44486/publications.pdf

Version: 2024-02-01

430843 501174 42 816 18 28 citations h-index g-index papers 43 43 43 69 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A new approach to lattice-valued convergence groups via âŠ-filters. Fuzzy Sets and Systems, 2023, 455, 198-221.	2.7	3
2	The category of residuated lattice valued filter spaces. Quaestiones Mathematicae, 2022, 45, 1795-1821.	0.6	6
3	Equivalence among L-closure (interior) operators, L-closure (interior) systems and L-enclosed (internal) relations. Filomat, 2022, 36, 979-1003.	0.5	8
4	Hull operators and interval operators in (L,M)-fuzzy convex spaces. Fuzzy Sets and Systems, 2021, 405, 106-127.	2.7	23
5	Cartesian-closedness and subcategories of (L,ÂM)-fuzzy Q-convergence spaces. Soft Computing, 2021, 25, 11459-11469.	3.6	2
6	Axiomatic characterizations of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math> -valued rough sets using a single axiom. Information Sciences, 2021, 580, 283-310.	6.9	14
7	Fuzzy points based betweenness relations in L-convex spaces. Filomat, 2021, 35, 3521-3532.	0.5	9
8	Convergence structures in <i>M</i> -fuzzifying convex spaces. Quaestiones Mathematicae, 2020, 43, 1541-1561.	0.6	33
9	Using single axioms to characterize L-rough approximate operators with respect to various types of L-relations. International Journal of Machine Learning and Cybernetics, 2020, 11, 1061-1082.	3.6	14
10	Bases and subbases in (L,ÂM)-fuzzy convex spaces. Computational and Applied Mathematics, 2020, 39, 1.	2.2	17
11	Fuzzy counterparts of hull operators and interval operators in the framework of L-convex spaces. Fuzzy Sets and Systems, 2019, 369, 20-39.	2.7	52
12	An axiomatic approach to bases and subbases in L-convex spaces and their applications. Fuzzy Sets and Systems, 2019, 369, 40-56.	2.7	42
13	L-fuzzy rough approximation operators via three new types of L-fuzzy relations. Soft Computing, 2019, 23, 11433-11446.	3.6	16
14	Coreflectivities of (L, M)-fuzzy convex structures and (L, M)-fuzzy cotopologies in (L, M)-fuzzy closure systems. Journal of Intelligent and Fuzzy Systems, 2019, 37, 3751-3761.	1.4	12
15	L-fuzzifying approximation operators in fuzzy rough sets. Information Sciences, 2019, 480, 14-33.	6.9	29
16	Convenient properties of stratified L-convergence tower spaces. Filomat, 2019, 33, 4811-4825.	0.5	18
17	Stratified L-prefilter convergence structures in stratified L-topological spaces. Soft Computing, 2018, 22, 7539-7551.	3.6	23
18	A new definition of order relation for the introduction of algebraic fuzzy closure operators. International Journal of Approximate Reasoning, 2018, 92, 87-96.	3.3	34

#	Article	IF	CITATIONS
19	Strong inclusion orders between $\langle i \rangle L \langle i \rangle$ -subsets and its applications in $\langle i \rangle L \langle i \rangle$ -convex spaces. Quaestiones Mathematicae, 2018, 41, 1021-1043.	0.6	42
20	Pointwise (L, M)-fuzzy uniformities induced by (L, M)-fuzzy pseudo-metric and pointwise pseudo-metric chains. Journal of Intelligent and Fuzzy Systems, 2018, 35, 579-588.	1.4	2
21	A degree approach to special mappings between M-fuzzifying convex spaces. Journal of Intelligent and Fuzzy Systems, 2018, 35, 705-716.	1.4	24
22	Categorical properties of L-fuzzifying convergence spaces. Filomat, 2018, 32, 4021-4036.	0.5	32
23	Subcategories of the category of L-convex spaces. Fuzzy Sets and Systems, 2017, 313, 61-74.	2.7	73
24	Stratified <i>L</i> -ordered filter spaces. Quaestiones Mathematicae, 2017, 40, 661-678.	0.6	41
25	Lattice-valued interval operators and its induced lattice-valued convex structures. IEEE Transactions on Fuzzy Systems, 2017, , 1-1.	9.8	10
26	Several types of enriched (L, M)-fuzzy convergence spaces. Fuzzy Sets and Systems, 2017, 321, 55-72.	2.7	11
27	M-fuzzifying cotopological spaces andÂM-fuzzifying convex spaces asÂM-fuzzifying closure spaces. Journal of Intelligent and Fuzzy Systems, 2017, 33, 613-620.	1.4	59
28	Degrees of separation properties in stratified L-generalized convergence spaces using residual implication. Filomat, 2017, 31, 6293-6305.	0.5	43
29	Topologies induced by pointwise L-fuzzifying quasi-uniformities. Journal of Intelligent and Fuzzy Systems, 2016, 30, 3025-3031.	1.4	0
30	L-fuzzy N-convergence structures. Journal of Intelligent and Fuzzy Systems, 2016, 30, 3033-3043.	1.4	3
31	Extensional L-fuzzy Q-convergence structures. Journal of Intelligent and Fuzzy Systems, 2016, 31, 1701-1708.	1.4	1
32	Topological properties of L-partial pseudo-quasi- metric spaces. Journal of Nonlinear Science and Applications, 2016, 09, 3169-3178.	1.0	3
33	Completion of gradual metric spaces. Journal of Intelligent and Fuzzy Systems, 2014, 27, 2597-2602.	1.4	2
34	Degrees of continuous mappings, open mappings, and closed mappings in L-fuzzifying topological spaces. Journal of Intelligent and Fuzzy Systems, 2014, 27, 805-816.	1.4	13
35	Redundancy of fuzzy soft topological spaces. Journal of Intelligent and Fuzzy Systems, 2014, 27, 1757-1760.	1.4	5
36	Characterizations of (L,M)-fuzzy pseudo-metrics by pointwise pseudo-metric chains. Journal of Intelligent and Fuzzy Systems, 2014, 27, 2399-2407.	1.4	4

#	Article	IF	CITATIONS
37	Enriched (L,M)-fuzzy convergence spaces. Journal of Intelligent and Fuzzy Systems, 2014, 27, 93-103.	1.4	14
38	Degrees of compactness in <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">(</mml:mo><mml:mi>L</mml:mi><mml:mo>,</mml:mo><mml:mi>M</mml:mi> definition of the compact of the compa</mml:math>	TQ q0 *0 0	rgB 2 1/Overlock
39	ond Gratismaca Och And Shiml=2 Actp://www.w3.org/1998/iviath/iviath/viat	TQ q 1510.	78 43 14 rgB <mark>T</mark>
40	The category of stratified L-filter spaces. Fuzzy Sets and Systems, 2014, 247, 108-126.	2.7	8
41	L-fuzzy Q-convergence structures. Fuzzy Sets and Systems, 2011, 182, 53-65.	2.7	18
42	Axiomatic characterizations of L-fuzzy rough sets by L-fuzzy unions and L-fuzzy intersections. International Journal of General Systems, 0, , 1-36.	2.5	1