S Gala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4447977/publications.pdf

Version: 2024-02-01

93	1,267	16 h-index	434195 31 g-index
papers	Citations	II-IIIQEX	g-muex
94 all docs	94 docs citations	94 times ranked	340 citing authors

#	Article	IF	CITATIONS
1	On the continuation principle of local smooth solution for the Hall-MHD equations. Applicable Analysis, 2022, 101, 545-553.	1.3	13
2	Beale–Kato–Majda Regularity Criterion of Smooth Solutions for the Hall-MHD Equations with Zero Viscosity. Bulletin of the Brazilian Mathematical Society, 2022, 53, 229-241.	0.8	8
3	Improved regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component. AIP Conference Proceedings, 2022, , .	0.4	3
4	On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces. Vietnam Journal of Mathematics, 2021, 49, 637-649.	0.8	9
5	A Regularity Criterion for the 3D Density-Dependent MHD Equations. Bulletin of the Brazilian Mathematical Society, 2021, 52, 241-251.	0.8	11
6	A new regularity criterion of weak solutions to the 3D micropolar fluid flows in terms of the pressure. Bolletino Dell Unione Matematica Italiana, 2021, 14, 331-337.	1.0	1
7	A double-logarithmically improved regularity criterion of weak solutions for the 3D MHD equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2021, 72, 1.	1.4	5
8	Logarithmically improved regularity criterion for the 3D Hall-MHD equations. Computational and Applied Mathematics, 2021, 40, 1.	2.2	0
9	Improved regularity criterion for the 3D Navier–Stokes equations via the gradient of one velocity component. SN Partial Differential Equations and Applications, 2021, 2, 1.	0.6	4
10	A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations. Bulletin of the Brazilian Mathematical Society, 2020, 51, 513-525.	0.8	4
11	A new regularity criterion for the 3D incompressible MHD equations via partial derivatives. Journal of Mathematical Analysis and Applications, 2020, 481, 123497.	1.0	14
12	Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in $\{R\}}^{3}$. Computational and Applied Mathematics, 2020, 39, 1.	2.2	8
13	A logarithmically improved regularity criterion for the Boussinesq equations in a bounded domain. SN Partial Differential Equations and Applications, 2020, $1, 1$.	0.6	2
14	A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	1.4	16
15	A Regularity Criterion in Weak Spaces to Boussinesq Equations. Mathematics, 2020, 8, 920.	2.2	56
16	The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5, 359-375.	1.6	1
17	Logarithmically improved blow-up criterion for smooth solutions to the Leray-\$alpha \$-magnetohydrodynamic equations. Archivum Mathematicum, 2019, , 55-68.	0.3	4
18	On the Blow-Up Criterion for Incompressible Stokes–MHD Equations. Results in Mathematics, 2018, 73, 1.	0.8	16

#	Article	IF	CITATIONS
19	A regularity criterion of smooth solution for the 3D viscous Hall-MHDequations. AIMS Mathematics, 2018, 3, 565-574.	1.6	6
20	New regularity criteria for the 3D Hall-MHD equations. Annales Polonici Mathematici, 2018, 121, 7-20.	0.5	5
21	A Regularity Criterion in Terms of Pressure for the 3D Viscous MHD Equations. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 1677-1690.	0.9	13
22	On the regularity criterion for the Navier–Stokes equations in terms of one directional derivative. Asian-European Journal of Mathematics, 2017, 10, 1750012.	0.5	7
23	An improved blowâ€up criterion for smooth solutions of the twoâ€dimensional MHD equations. Mathematical Methods in the Applied Sciences, 2017, 40, 279-285.	2.3	6
24	Note on the blow-up criterion for generalized MHD equations. AIP Conference Proceedings, 2017, , .	0.4	5
25	On the regularity criterion of weak solutions for the 3D MHD equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	15
26	Note on the weak–strong uniqueness criterion for the β-QG in Morrey–Campanato space. Applied Mathematics and Computation, 2017, 293, 65-71.	2.2	2
27	A note on regularity criteria in terms of pressure for the 3D viscous MHD equations. Mathematical Notes, 2017, 102, 475-479.	0.4	8
28	A logarithmically improved regularity criterion for the supercritical quasi-geostrophic equations in Besov space. Acta Mathematicae Applicatae Sinica, 2017, 33, 679-686.	0.7	0
29	Logarithmically improved regularity criteria for the Boussinesq equations. AIMS Mathematics, 2017, 2, 336-347.	1.6	3
30	A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2, 451-457.	1.6	9
31	A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity. AIP Conference Proceedings, $2016, \ldots$	0.4	2
32	A logarithmic regularity criterion for the two-dimensional MHD equations. Journal of Mathematical Analysis and Applications, 2016, 444, 1752-1758.	1.0	18
33	Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	12
34	On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in $\$\{mathbb\{R\}^{3}\}$ R 3. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	16
35	Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Applicable Analysis, 2016, 95, 1271-1279.	1.3	68
36	A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity. Electronic Journal of Qualitative Theory of Differential Equations, 2016, , 1-9.	0.5	12

#	Article	IF	CITATIONS
37	A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1, 282-287.	1.6	2
38	A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2016, 2, 16-23.	1.6	3
39	A new regularity criterion for strong solutions to the Ericksen–Leslie system. Applicationes Mathematicae, 2016, 43, 95-103.	0.1	3
40	A regularity criterion for the three-dimensional MHD equations in terms of one directional derivative of the pressure. Computers and Mathematics With Applications, 2015, 70, 3057-3061.	2.7	5
41	A remark on two generalized Orlicz–Morrey spaces. Journal of Approximation Theory, 2015, 198, 1-9.	0.8	37
42	On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of <i>BMO</i> space. Mathematical Methods in the Applied Sciences, 2014, 37, 2320-2325.	2.3	46
43	A remark on the regularity criterion of Boussinesq equations with zero heat conductivity. Applied Mathematics Letters, 2014, 27, 70-73.	2.7	48
44	Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces. Applicable Analysis, 2014, 93, 356-368.	1.3	43
45	Logarithmically improved regularity criterion for the nematic liquid crystal flows in minimath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo>i‡</mml:mo></mml:mrow><mml:mo>i#</mml:mo></mml:mover></mml:mrow><mml:mo>i#<mml:mo>i#<mml:mo>i#<mml:mo>i#<mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo>i#</mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>2.7 w><td>30 nover></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mo></mml:mo></mml:mo></mml:mo></mml:msubsup>	2.7 w> <td>30 nover></td>	30 nover>
46	Computers and Mathematics With Applications, 2013, 65, 1730-1745. Logarithmically improved criteria for the 3D nematic liquid crystal flows in the Morrey–Campanato space. Computers and Mathematics With Applications, 2013, 66, 2327-2334.	2.7	O
47	On the uniqueness of weak solutions of the 3D MHD equations in the Orlicz–Morrey space. Applicable Analysis, 2013, 92, 776-783.	1.3	11
48	Remarks on regularity criterion for weak solutions to the Navier–Stokes equations in terms of the gradient of the pressure. Applicable Analysis, 2013, 92, 96-103.	1.3	10
49	CHARACTERIZATION OF THE MULTIPLIERS FROM ḢrTO Ḣ-r. Bulletin of the Korean Mathematical Society, 2013, 50, 915-928.	0.3	2
50	A REGULARITY CRITERION FOR THE NAVIER–STOKES EQUATIONS IN TERMS OF ONE DIRECTIONAL DERIVATIVE OF THE VELOCITY FIELD. Analysis and Applications, 2012, 10, 373-380.	2.2	11
51	A new regularity criterion for the nematic liquid crystal flows. Applicable Analysis, 2012, 91, 1741-1747.	1.3	53
52	A note on the blow-up criterion of smooth solutions to the 3D incompressible MHD equations. Acta Mathematicae Applicatae Sinica, 2012, 28, 639-642.	0.7	7
53	Regularity criterion of the Newton-Boussinesq equations in R^3 . Communications on Pure and Applied Analysis, 2012, 11, 443-451.	0.8	7
54	A new Beale–Kato–Majda criteria for the 3D magnetoâ€micropolar fluid equations in the Orlicz–Morrey space. Mathematical Methods in the Applied Sciences, 2012, 35, 1321-1334.	2.3	10

#	Article	IF	CITATIONS
55	A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero kinematic viscosity. Acta Mathematicae Applicatae Sinica, 2012, 28, 209-214.	0.7	1
56	A note on the regularity criteria for the Navier–Stokes equations. Applied Mathematics Letters, 2012, 25, 305-309.	2.7	6
57	Logarithmically Improved Criteria for the 3D Nematic Liquid Crystal Flows in the Multiplier Spaces. Acta Applicandae Mathematicae, 2012, 117, 107-114.	1.0	3
58	A new regularity criterion for the 3D MHD equations in R^3 . Communications on Pure and Applied Analysis, 2012, 11, 973-980.	0.8	8
59	Remarks on logarithmical regularity criteria for the Navier–Stokes equations. Journal of Mathematical Physics, 2011, 52, 063503.	1.1	32
60	Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations. Quarterly of Applied Mathematics, 2011, 69, 147-155.	0.7	6
61	Regularity Criteria in Terms of the Pressure for the Navier-Stokes Equations in the Critical Morrey-Campanato Space. Zeitschrift Fur Analysis Und Ihre Anwendung, 2011, 30, 83-93.	0.6	14
62	Regularity criterion for weak solutions to the Navier–Stokes equations in terms of the pressure in the class. Nonlinear Analysis: Real World Applications, 2011, 12, 3602-3607.	1.7	17
63	A New Regularity Criterion in Terms of the Direction ofÂtheÂVelocity for the MHD Equations. Acta Applicandae Mathematicae, 2011, 113, 207-213.	1.0	9
64	On the regularity criteria of the 3D Navier-Stokes equations in critical spaces. Acta Mathematica Scientia, 2011, 31, 591-600.	1.0	16
65	A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure. Mathematical Methods in the Applied Sciences, 2011, 34, 1945-1953.	2.3	9
66	On the regularity criterion for the solutions of 3D Navier-Stokes equations in weak multiplier spaces. Mathematical Methods in the Applied Sciences, 2011, 34, 2060-2064.	2.3	3
67	A remark on the blow-up criterion of strong solutions to the Navier–Stokes equations. Applied Mathematics and Computation, 2011, 217, 9488-9491.	2.2	7
68	On the regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 775-782.	1.1	9
69	On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey–Campanato space. Nonlinear Analysis: Real World Applications, 2011, 12, 2142-2150.	1.7	23
70	ON THE REGULARITY CRITERIA FOR THE GENERALIZED VISCOUS MHD EQUATIONS. Asian-European Journal of Mathematics, 2011, 04, 403-411.	0.5	0
71	On the regularity criterion of strong solutions to the 3D Boussinesq equations. Applicable Analysis, 2011, 90, 1829-1835.	1.3	13
72	A NEW CONTINUATION PRINCIPLE FOR THE NAVIER–STOKES EQUATIONS. Asian-European Journal of Mathematics, 2011, 04, 605-612.	0.5	0

#	Article	IF	Citations
73	REMARKS ON LOGARITHMICALLY REGULARITY CRITERIA FOR THE 3D VISCOUS MHD EQUATIONS. Journal of the Korean Mathematical Society, 2011, 48, 465-474.	0.4	1
74	Wavelet characterization of the pointwise multiplier space $dot{X}_{r}\$. Functiones Et Approximatio, Commentarii Mathematici, 2010, 43, .	0.3	1
75	Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey–Campanato space. Nonlinear Differential Equations and Applications, 2010, 17, 181-194.	0.8	46
76	Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Zeitschrift Fur Angewandte Mathematik Und Physik, 2010, 61, 193-199.	1.4	118
77	Extension criterion on regularity for weak solutions to the 3D MHD equations. Mathematical Methods in the Applied Sciences, 2010, 33, 1496-1503.	2.3	23
78	A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 3643-3648.	1.1	48
79	Remark on the regularity criterion for three-dimensional magnetohydrodynamic equations. Applied Mathematics Letters, 2010, 23, 64-67.	2.7	2
80	Remark on the blow-up criterion of strong solutions to the navier-stokes equations in multiplier spaces. Acta Mathematica Scientia, 2010, 30, 1413-1418.	1.0	1
81	On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2010, 10, 583-592.	0.8	4
82	Logarithmically improved regularity criteria for the Navier–Stokes equations in multiplier spaces. Journal of Mathematical Analysis and Applications, 2009, 356, 498-501.	1.0	49
83	A note on the uniqueness of weak solutions for the Navier-Stokes equations. Dynamics of Partial Differential Equations, 2009, 6, 385-391.	0.9	0
84	Application of the Trace Inequality to the Poisson Equation. Positivity, 2008, 12, 289-312.	0.7	1
85	Regularity of solutions of Poisson's equation in multiplier spaces. Periodica Mathematica Hungarica, 2008, 57, 1-22.	0.9	0
86	Uniqueness of weak solutions of the Navier-Stokes equations. Applications of Mathematics, 2008, 53, 561-582.	0.9	2
87	Remark on uniqueness of weak solutions to the Navier–Stokes equations. Analysis (Germany), 2008, 28,	0.4	1
88	REGULARITY CRITERION ON WEAK SOLUTIONS TO THE NAVIER-STOKES EQUATIONS. Journal of the Korean Mathematical Society, 2008, 45, 537-558.	0.4	8
89	A note on the uniqueness of mild solutions to the Navier-Stokes equations. Archiv Der Mathematik, 2007, 88, 448-454.	0.5	7
90	Multipliers between Sobolev spaces and fractional differentiation. Journal of Mathematical Analysis and Applications, 2006, 322, 1030-1054.	1.0	49

#	Article	IF	CITATIONS
91	The form boundedness criterion for the Laplacian operator. Journal of Mathematical Analysis and Applications, 2006, 323, 1253-1263.	1.0	2
92	Multipliers spaces, Muckenhoupt weights and pseudo-differential operators. Journal of Mathematical Analysis and Applications, 2006, 324, 1262-1273.	1.0	10
93	A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity. Annales Polonici Mathematici, 0, , 1-12.	0.5	5