Jose Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/444726/publications.pdf Version: 2024-02-01

LOSE LOLESIAS

#	Article	IF	CITATIONS
1	Elucidating the roles of acid site nature and strength in the direct conversion of levulinic acid into ethyl valerate: the case of Zr-modified beta zeolite-supported Pd catalysts. Sustainable Energy and Fuels, 2022, 6, 1164-1174.	4.9	5
2	Integrated Environmental and Exergoeconomic Analysis of Biomassâ€Derived Maleic Anhydride. Advanced Sustainable Systems, 2022, 6, .	5.3	6
3	Efficient Conversion of Glucose to Methyl Lactate with Sn-USY: Retro-aldol Activity Promotion by Controlled Ion Exchange. ACS Sustainable Chemistry and Engineering, 2022, 10, 8885-8896.	6.7	9
4	Understanding the role of Al/Zr ratio in Zr-Al-Beta zeolite: Towards the one-pot production of GVL from glucose. Catalysis Today, 2021, 367, 228-238.	4.4	24
5	Determination of the optimal distillation sequence of a ternary mixture incorporating heat integration by means of Microsoft Excel Solver. Computer Applications in Engineering Education, 2021, 29, 1691.	3.4	0
6	Catalytic Transfer Hydrogenation of Glucose to Sorbitol with Raney Ni Catalysts Using Biomass-Derived Diols as Hydrogen Donors. ACS Sustainable Chemistry and Engineering, 2021, 9, 14857-14867.	6.7	24
7	Glycerol valorization: conversion to lactic acid by heterogeneous catalysis and separation by ion exchange chromatography. Biofuels, Bioproducts and Biorefining, 2020, 14, 357-370.	3.7	25
8	Application of the microsoft excel solver tool in the optimization of distillation sequences problems. Computer Applications in Engineering Education, 2020, 28, 304-313.	3.4	8
9	Life-cycle sustainability of biomass-derived sorbitol: Proposing technological alternatives for improving the environmental profile of a bio-refinery platform molecule. Journal of Cleaner Production, 2020, 250, 119568.	9.3	24
10	Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.	38.1	134
11	Temperature Effect on Pretreatment of the Activated Carbon Support (Pt/AC and Pd/AC) for Glycerin into Lactic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 14643-14657.	3.7	13
12	Comparative Life Cycle Assessment of Glucose Production from Maize Starch and Woody Biomass Residues as a Feedstock. Applied Sciences (Switzerland), 2020, 10, 2946.	2.5	19
13	Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts. Catalysts, 2020, 10, 581.	3.5	12
14	Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences (Switzerland), 2020, 10, 1843.	2.5	29
15	Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst. Catalysts, 2020, 10, 678.	3.5	23
16	Catalytic transfer hydrogenation of maleic acid with stoichiometric amounts of formic acid in aqueous phase: paving the way for more sustainable succinic acid production. Green Chemistry, 2020, 22, 1859-1872.	9.0	32
17	Ru-ZrO2-SBA-15 as efficient and robust catalyst for the aqueous phase hydrogenation of glucose to sorbitol. Molecular Catalysis, 2020, 484, 110802.	2.0	18
18	Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.	4.1	60

JOSE IGLESIAS

#	Article	IF	CITATIONS
19	From levulinic acid biorefineries to γ-valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst. Reaction Chemistry and Engineering, 2019, 4, 1834-1843.	3.7	32
20	Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs Catalytic Hydrogen Transfer. Topics in Catalysis, 2019, 62, 570-578.	2.8	25
21	Sn–Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange. Green Chemistry, 2019, 21, 5876-5885.	9.0	24
22	Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 2018, 60, 1-70.	12.9	145
23	Zr-USY zeolite: Efficient catalyst for the transformation of xylose into bio-products. Catalysis Today, 2018, 304, 80-88.	4.4	29
24	Rational Optimization of Reaction Conditions for the One-Pot Transformation of Furfural to γ-Valerolactone over Zr–Al-Beta Zeolite: Toward the Efficient Utilization of Biomass. Industrial & Engineering Chemistry Research, 2018, 57, 11592-11599.	3.7	47
25	ZrO ₂ -SBA-15 catalysts for the one-pot cascade synthesis of GVL from furfural. Catalysis Science and Technology, 2018, 8, 4485-4493.	4.1	69
26	Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catalysis Today, 2017, 279, 305-316.	4.4	84
27	Catalytic upgrading of furfuryl alcohol to bio-products: Catalysts screening and kinetic analysis. Applied Catalysis A: General, 2017, 537, 74-82.	4.3	45
28	Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study. Topics in Catalysis, 2017, 60, 1027-1039.	2.8	14
29	Efficient one-pot production of \hat{i}^3 -valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green Chemistry, 2017, 19, 5114-5121.	9.0	57
30	Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Applied Catalysis A: General, 2017, 531, 151-160.	4.3	40
31	Mo(VI) Complexes Immobilized on SBA-15 as an Efficient Catalyst for 1-Octene Epoxidation. Catalysts, 2017, 7, 215.	3.5	12
32	Dehydration of Xylose to Furfural in Alcohol Media in the Presence of Solid Acid Catalysts. ChemCatChem, 2016, 8, 2089-2099.	3.7	44
33	One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional BrÃ,nsted–Lewis Zr–Al-beta zeolite. Green Chemistry, 2016, 18, 5777-5781.	9.0	76
34	Chemical routes for the conversion of cellulosic platformÂmolecules into high-energy-density biofuels. , 2016, , 359-388.		1
35	Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 2016, 180, 228-237.	7.8	58
36	Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction. Catalysts, 2015, 5, 1911-1927.	3.5	63

JOSE IGLESIAS

#	Article	IF	CITATIONS
37	Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Conversion and Management, 2015, 103, 111-118.	9.2	58
38	Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renewable Energy, 2015, 75, 425-432.	8.9	21
39	Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis, 2014, 35, 644-655.	14.0	34
40	Continuous production of biodiesel from low grade feedstock in presence of Zr-SBA-15: Catalyst performance and resistance against deactivation. Catalysis Today, 2014, 234, 174-181.	4.4	25
41	Tight control of cellulose depolymerization towards glucose in organic electrolyte solutions. Biomass and Bioenergy, 2014, 62, 158-165.	5.7	4
42	Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chemical Communications, 2014, 50, 11742-11745.	4.1	88
43	New insights in the deactivation of sulfonic modified SBA-15 catalysts for biodiesel production from low-grade oleaginous feedstock. Applied Catalysis A: General, 2014, 488, 111-118.	4.3	17
44	Production of biodiesel from waste cooking oil in a continuous packed bed reactor with an agglomerated Zr-SBA-15/bentonite catalyst. Applied Catalysis B: Environmental, 2014, 145, 197-204.	20.2	53
45	Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Applied Catalysis A: General, 2013, 466, 116-122.	4.3	132
46	Zrâ€Containing Hybrid Organic–Inorganic Mesoporous Materials: Hydrophobic Acid Catalysts for Biodiesel Production ChemCatChem, 2013, 5, 994-1001.	3.7	40
47	Zr-SBA-15 acid catalyst: Optimization of the synthesis and reaction conditions for biodiesel production from low-grade oils and fats. Catalysis Today, 2012, 195, 44-53.	4.4	79
48	Biodiesel from waste oils and fats. , 2012, , 154-178.		5
49	Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy and Environmental Science, 2012, 5, 7393.	30.8	393
50	Maximizing the Accessibility of Active Species in Weakly Acidic Zrâ€SBAâ€15 Materials. ChemCatChem, 2012, 4, 379-386.	3.7	16
51	Low-grade oils and fats: Effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts. Bioresource Technology, 2011, 102, 9571-9578.	9.6	43
52	Synthesis and characterisation of (hydroxypropyl)-2-aminomethyl pyridine containing hybrid polymer–silica SBA-15 materials supporting Mo(vi) centres and their use as heterogeneous catalysts for oct-1-ene epoxidation. Journal of Materials Chemistry, 2011, 21, 6725.	6.7	15
53	Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil. Catalysis Today, 2011, 167, 46-55.	4.4	68
54	Modification of chiral dimethyl tartrate through transesterification: Immobilization on POSS and enantioselectivity reversal in sharpless asymmetric epoxidation. Chirality, 2010, 22, 675-683.	2.6	10

JOSE IGLESIAS

#	Article	IF	CITATIONS
55	Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chemical Engineering Journal, 2010, 161, 323-331.	12.7	175
56	Synthesis and characterization of SBA-15 materials functionalized with olefinic groups and subsequent modification through oxidation procedures. Microporous and Mesoporous Materials, 2010, 131, 321-330.	4.4	11
57	Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous and Mesoporous Materials, 2010, 132, 112-120.	4.4	27
58	Biodiesel Production Over Arenesulfonic Acid-Modified Mesostructured Catalysts: Optimization of Reaction Parameters Using Response Surface Methodology. Topics in Catalysis, 2010, 53, 795-804.	2.8	26
59	Facile one-pot approach to the synthesis of chiral periodic mesoporous organosilicas SBA-15-type materials. Journal of Catalysis, 2010, 274, 221-227.	6.2	34
60	Synthesis of Sn–silicalite from hydrothermal conversion of SiO2–SnO2 xerogels. Microporous and Mesoporous Materials, 2009, 119, 176-185.	4.4	36
61	Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 2009, 11, 1285.	9.0	463
62	Biodiesel Production with Heterogeneous Sulfonic Acid-Functionalized Mesostructured Catalysts. Energy & Fuels, 2009, 23, 539-547.	5.1	102
63	Agglomeration of Ti-SBA-15 with clays for liquid phase olefin epoxidation in a continuous fixed bed reactor. Chemical Engineering Journal, 2008, 139, 631-641.	12.7	18
64	Direct synthesis of organically modified Ti-SBA-15 materials. Journal of Molecular Catalysis A, 2008, 291, 75-84.	4.8	20
65	Synthesis of Chiral Periodic Mesoporous Silicas Incorporating Tartrate Derivatives in the Framework and Their Use in Asymmetric Sulfoxidation. Chemistry of Materials, 2008, 20, 2964-2971.	6.7	42
66	Synthesis of titanium containing periodic mesoporous organosilica. Studies in Surface Science and Catalysis, 2007, , 450-455.	1.5	3
67	Synthesis and catalytic activity of organic–inorganic hybrid Ti-SBA-15 materials. Journal of Materials Chemistry, 2007, 17, 377-385.	6.7	62
68	Novel titanocene–tartrate complexes as catalysts for the asymmetric epoxidation of allylic alcohols. Catalysis Communications, 2007, 8, 655-660.	3.3	3
69	Synthesis, characterization and catalytic activity of highly dispersed Mo-SBA-15. Applied Catalysis A: General, 2007, 331, 84-94.	4.3	42
70	Direct synthesis and post-oxidation of SBA-15 and MCM-41 functionalized with butenyl groups. Studies in Surface Science and Catalysis, 2005, 158, 485-492.	1.5	4
71	Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous and Mesoporous Materials, 2005, 86, 364-373.	4.4	54
72	Supercritical Fluid Extraction of a Nonionic Surfactant Template from SBA-15 Materials and Consequences on the Porous Structure. Langmuir, 2003, 19, 3966-3973.	3.5	146

#	Article	IF	CITATIONS
73	Preparation of titanium molecular species supported on mesostructured silica by different grafting methods. Journal of Molecular Catalysis A, 2002, 182-183, 215-225.	4.8	48