
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4447113/publications.pdf Version: 2024-02-01

IOHN M RELL

#	Article	IF	CITATIONS
1	2-Methylimidazole-Derived Ni–Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 15510-15524.	8.0	374
2	An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 2784-2793.	10.3	131
3	Enhanced perovskite electronic properties via a modified lead(<scp>ii</scp>) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 5195-5203.	10.3	128
4	All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nature Electronics, 2022, 5, 45-52.	26.0	111
5	Twoâ€Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. Angewandte Chemie - International Edition, 2016, 55, 10292-10295.	13.8	100
6	Predicting Single-Layer Technetium Dichalcogenides (TcX ₂ , X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 5385-5392.	8.0	100
7	Twoâ€Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties. Angewandte Chemie, 2016, 128, 10448-10451.	2.0	94
8	First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride. Physical Review Letters, 2017, 119, 016403.	7.8	84
9	Bioinspired 2D Nanomaterials for Sustainable Applications. Advanced Materials, 2020, 32, e1902806.	21.0	84
10	Thermal Transport in 3D Nanostructures. Advanced Functional Materials, 2020, 30, 1903841.	14.9	83
11	Octadecylamineâ€Functionalized Singleâ€Walled Carbon Nanotubes for Facilitating the Formation of a Monolithic Perovskite Layer and Stable Solar Cells. Advanced Functional Materials, 2018, 28, 1705545.	14.9	73
12	Diamond Nanothread as a New Reinforcement for Nanocomposites. Advanced Functional Materials, 2016, 26, 5279-5283.	14.9	63
13	Versatile Single-Layer Sodium Phosphidostannate(II): Strain-Tunable Electronic Structure, Excellent Mechanical Flexibility, and an Ideal Gap for Photovoltaics. Journal of Physical Chemistry Letters, 2015, 6, 2682-2687.	4.6	60
14	Low Hysteresis Perovskite Solar Cells Using an Electron-Beam Evaporated WO _{3–<i>x</i>} Thin Film as the Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 5456-5464.	5.1	58
15	Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. ACS Applied Materials & Interfaces, 2017, 9, 16967-16976.	8.0	56
16	Phase-selective hydrothermal synthesis of Cu ₂ ZnSnS ₄ nanocrystals: the effect of the sulphur precursor. CrystEngComm, 2014, 16, 4306-4313.	2.6	54
17	One-step synthesis of high quality kesterite Cu ₂ ZnSnS ₄ nanocrystals – a hydrothermal approach. Beilstein Journal of Nanotechnology, 2014, 5, 438-446.	2.8	47
18	Effect of Inorganic Iodides on Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2007, 111, 15125-15131.	3.1	45

#	Article	IF	CITATIONS
19	Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. Applied Physics Letters, 2009, 95, 013304.	3.3	45
20	Plasma-enabled sustainable elemental lifecycles: honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chemistry, 2015, 17, 2164-2171.	9.0	45
21	Tuning the Charge Carrier Polarity of Organic Transistors by Varying the Electron Affinity of the Flanked Units in Diketopyrrolopyrroleâ€Based Copolymers. Advanced Functional Materials, 2020, 30, 1907452.	14.9	45
22	Enhanced Electron Lifetime of CdSe/CdS Quantum Dot (QD) Sensitized Solar Cells Using ZnSe Core–Shell Structure with Efficient Regeneration of Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2297-2307.	3.1	43
23	Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation. RSC Advances, 2015, 5, 82346-82350.	3.6	43
24	Synergistic Use of Pyridine and Selenophene in a Diketopyrrolopyrroleâ€Based Conjugated Polymer Enhances the Electron Mobility in Organic Transistors. Advanced Functional Materials, 2020, 30, 2000489.	14.9	43
25	Tuning the Amount of Oxygen Vacancies in Sputterâ€Deposited SnO _{<i>x</i>} films for Enhancing the Performance of Perovskite Solar Cells. ChemSusChem, 2018, 11, 3096-3103.	6.8	38
26	Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 2021, 23, 5302-5336.	9.0	38
27	Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	37
28	Carbon concentration dependent grain growth of Cu ₂ ZnSnS ₄ thin films. RSC Advances, 2015, 5, 20178-20185.	3.6	37
29	Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes. Polymers, 2011, 3, 1433-1446.	4.5	32
30	Naphthalimide end capped anthraquinone based solution-processable n-channel organic semiconductors: effect of alkyl chain engineering on charge transport. Journal of Materials Chemistry C, 2018, 6, 3774-3786.	5.5	30
31	Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors. New Journal of Chemistry, 2018, 42, 12374-12385.	2.8	29
32	A facile, environmentally friendly synthesis of strong photo-emissive methylammonium lead bromide perovskite nanocrystals enabled by ionic liquids. Green Chemistry, 2020, 22, 3433-3440.	9.0	29
33	High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage. RSC Advances, 2016, 6, 45986-45992.	3.6	27
34	Temperature and electric field dependent mobility in poly(3-hexylthiophene) diodes. Journal of Applied Physics, 2010, 108, 014512.	2.5	26
35	Building energy optimization using surrogate model and active sampling. Journal of Building Performance Simulation, 2020, 13, 760-776.	2.0	25
36	Current-voltage characteristics of poly(3-hexylthiophene) diodes at room temperature. Applied Physics Letters, 2009, 94, 083302.	3.3	24

#	Article	IF	CITATIONS
37	One-step synthesis of titanium oxide with trilayer structure for dye-sensitized solar cells. Applied Physics Letters, 2011, 98, 133113.	3.3	21
38	Diketopyrrolopyrrole-Based Dual-Acceptor Copolymers to Realize Tunable Charge Carrier Polarity of Organic Field-Effect Transistors and High-Performance Nonvolatile Ambipolar Flash Memories. ACS Applied Electronic Materials, 2020, 2, 1609-1618.	4.3	21
39	9-Fluorenone and 9,10-anthraquinone potential fused aromatic building blocks to synthesize electron acceptors for organic solar cells. New Journal of Chemistry, 2017, 41, 2899-2909.	2.8	19
40	Diketopyrrolopyrrole based organic semiconductors with different numbers of thiophene units: symmetry tuning effect on electronic devices. New Journal of Chemistry, 2018, 42, 4017-4028.	2.8	19
41	Mechanical bending properties of sodium titanate (Na ₂ Ti ₃ O ₇) nanowires. RSC Advances, 2014, 4, 56970-56976.	3.6	18
42	<i>In Situ</i> Atomic-Scale Study on the Ultralarge Bending Behaviors of TiO ₂ –B/Anatase Dual-Phase Nanowires. Nano Letters, 2019, 19, 7742-7749.	9.1	15
43	Naphthalimide end-capped diphenylacetylene: a versatile organic semiconductor for blue light emitting diodes and a donor or an acceptor for solar cells. New Journal of Chemistry, 2019, 43, 9243-9254.	2.8	15
44	Characterization of reaction products and mechanisms in atmospheric pressure plasma deposition of carbon films from ethanol. Journal of Materials Chemistry, 2005, 15, 300.	6.7	13
45	Strain Mediated Bandgap Reduction, Light Spectrum Broadening, and Carrier Mobility Enhancement of Methylammonium Lead/Tin Iodide Perovskites. Particle and Particle Systems Characterization, 2017, 34, 1600288.	2.3	13
46	Graphene with Patterned Fluorination: Morphology Modulation and Implications. Journal of Physical Chemistry C, 2015, 119, 27562-27568.	3.1	12
47	Atomistic investigation into the mechanical behaviour of crystalline and amorphous TiO ₂ nanotubes. RSC Advances, 2016, 6, 28121-28129.	3.6	12
48	Phthalimide and naphthalimide: Effect of end-capping groups on molecular properties and photovoltaic performance of 9-fluorenone based acceptors for organic solar cells. Organic Electronics, 2018, 62, 12-20.	2.6	10
49	A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand. PLoS ONE, 2015, 10, e0121195.	2.5	9
50	Carbon nanotube-based super nanotubes: tunable thermal conductivity in three dimensions. RSC Advances, 2015, 5, 48164-48168.	3.6	9
51	ATOMIC FORCE MICROSCOPY MEASUREMENTS OF BOVINE SERUM ALBUMIN ADHESION FORCES ON SURFACES. International Journal of Nanoscience, 2008, 07, 299-303.	0.7	6
52	Atypical Defect Motions in Brittle Layered Sodium Titanate Nanowires. Journal of Physical Chemistry Letters, 2018, 9, 6052-6059.	4.6	5
53	Atomic-scale investigation on the ultra-large bending behaviours of layered sodium titanate nanowires. Nanoscale, 2019, 11, 11847-11855.	5.6	5

Bioinspired 2D Nanomaterials: Bioinspired 2D Nanomaterials for Sustainable Applications (Adv. Mater.) Tj ETQq0 0 9 rgBT /Overlock 10 7

#	Article	IF	CITATIONS
55	Comparative study of photocatalytic performance of titanium oxide spheres assembled by nanorods, nanoplates and nanosheets. International Journal of Smart and Nano Materials, 2012, 3, 72-80.	4.2	4
56	Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand. PLoS ONE, 2015, 10, e0134086.	2.5	4
57	Surface modification of TiO2 by an ionic liquid electrolyte in dye-sensitized solar cells using a molecular insulator. RSC Advances, 2015, 5, 33855-33862.	3.6	4
58	Oriented Graphenes from Plasma-Reformed Coconut Oil for Supercapacitor Electrodes. Nanomaterials, 2019, 9, 1679.	4.1	4
59	Suppression of crystallization in ZBLAN glass by rapid heating and cooling processing. International Journal of Applied Class Science, 2019, 10, 391-400.	2.0	3
60	Experimental observation of anomalous absorption of bulk shear acoustic waves by a thin layer of viscous fluid. Applied Physics Letters, 2000, 76, 2020-2022.	3.3	2
61	Semi-empirical estimation of the attenuation loss for amorphous ZBLAN glass. Optical and Quantum Electronics, 2019, 51, 1.	3.3	1
62	Effect of Fe-doping on bending elastic properties of single-crystalline rutile TiO2 nanowires. Nanoscale Advances, 2020, 2, 2800-2807.	4.6	1
63	Complexes of conjugated polymer and carbon nanotubes: does blending with nanotubes influence the ordering of semi-crystalline polymers?. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
64	Molecular-resolved imaging of the Hierarchical Self-Assembly of a conductive polymer at single-walled carbon nanotube interfaces. , 2006, , .		0
65	Deformation behaviour of nanocrystalline Mg-Al alloys during nanoindentation. , 2010, , .		0
66	Towards controlled growth of carbon nanotubes from germanium on nanoindented silicon substrates. , 2010, , .		0
67	Challenges in field monitoring of energy performance of air conditioners. Energy Efficiency, 2015, 8, 1093-1104.	2.8	0
68	Tuning the Amount of Oxygen Vacancies in Sputter-Deposited SnO x films for Enhancing the Performance of Perovskite Solar Cells. ChemSusChem, 2018, 11, 3022-3022.	6.8	0
69	FACILE SYNTHESIS OF LITHIUM NIOBATE FROM A NOVEL PRECURSOR H ₂ (H ₂ (H ₂ , 2011, , .	O<td>font» 6</td>	fon t» 6
70	Conjugated 1,8-Naphthalimide Based Solution Processable n-Type Semiconductors for Organic		0