Hui Wu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4447076/hui-wu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 163 29,059 359 g-index h-index citations papers 11 370 7.37 33,973 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
359	Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	11
358	Hydrogen-Bonded Metal-Nucleobase Frameworks for Efficient Separation of Xenon and Krypton <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	1
357	Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. <i>Chemical Engineering Journal</i> , 2022 , 431, 134184	14.7	7
356	High-throughput production of kilogram-scale nanofibers by KĒmĒ vortex solution blow spinning <i>Science Advances</i> , 2022 , 8, eabn3690	14.3	6
355	Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes <i>Research</i> , 2022 , 2022, 9830457	7.8	2
354	Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts. <i>Nano Research</i> , 2022 , 15, 3065-3072	10	1
353	Electrostatically Driven Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Material. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9604-9609	16.4	26
352	Continuous Roll-to-Roll Production of Carbon Nanoparticles from Candle Soot. <i>Nano Letters</i> , 2021 , 21, 3198-3204	11.5	16
351	A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10304-10	3 ¹ 604	41
350	Robust Biological Hydrogen-Bonded Organic Framework with Post-Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visible-Light-Driven CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8983-8989	16.4	32
349	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7104-71	113.4	45
348	A Distinct Spin Structure and Giant Baromagnetic Effect in MnNiGe Compounds with Fe-Doping. Journal of the American Chemical Society, 2021 , 143, 6798-6804	16.4	1
347	Mechanochemical Synthesis of Pt/NbCT MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. <i>Materials</i> , 2021 , 14,	3.5	5
346	Quantum-confined blue photoemission in strain-engineered few-atomic-layer 2D germanium. <i>Nano Energy</i> , 2021 , 83, 105790	17.1	3
345	Mass Production of Ultrafine Fibers by a Versatile Solution Blow Spinning Method. <i>Accounts of Materials Research</i> , 2021 , 2, 432-446	7.5	8
344	A Microporous Hydrogen-Bonded Organic Framework for the Efficient Capture and Purification of Propylene. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20400-20406	16.4	26
343	Polymorphism of Calcium Decahydridodecaborate and Characterization of Its Hydrates. <i>Inorganic Chemistry</i> , 2021 , 60, 10943-10957	5.1	4

(2020-2021)

342	A novel anion-pillared metalorganic framework for highly efficient separation of acetylene from ethylene and carbon dioxide. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9248-9255	13	12
341	Ultrafast heating to boost the electrocatalytic activity of iridium towards oxygen evolution reaction. <i>Chemical Communications</i> , 2021 , 57, 7830-7833	5.8	1
340	Intermediate Sr2Co1.5Fe0.5O6ITetragonal Structure between Perovskite and Brownmillerite as a Model Catalyst with Layered Oxygen Deficiency for Enhanced Electrochemical Water Oxidation. <i>ACS Catalysis</i> , 2021 , 11, 4327-4337	13.1	8
339	Synthesis and Characterization of Sr2Co2-xFexO5+d Perovskite Oxides. <i>Microscopy and Microanalysis</i> , 2021 , 27, 714-715	0.5	
338	Developing Ideal Metalorganic Hydrides for Hydrogen Storage: From Theoretical Prediction to Rational Fabrication 2021 , 3, 1417-1425		4
337	Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. <i>Energy Storage Materials</i> , 2021 , 40, 329-336	19.4	13
336	Highly Selective Adsorption of Carbon Dioxide over Acetylene in an Ultramicroporous Metal-Organic Framework. <i>Advanced Materials</i> , 2021 , 33, e2105880	24	14
335	Giant Topological Hall Effect and Superstable Spontaneous Skyrmions below 330 K in a Centrosymmetric Complex Noncollinear Ferromagnet NdMnGe. <i>ACS Applied Materials & Materials & Interfaces</i> , 2020 , 12, 24125-24132	9.5	4
334	Continuous production and properties of mutil-level nanofiber air filters by blow spinning <i>RSC Advances</i> , 2020 , 10, 19615-19620	3.7	12
333	Large nonlinear optical effect in tungsten bronze structures via Li/Na cross-substitutions. <i>Chemical Communications</i> , 2020 , 56, 8384-8387	5.8	1
332	A Garnet-Type Solid-Electrolyte-Based Molten Lithium-Molybdenum-Iron(II) Chloride Battery with Advanced Reaction Mechanism. <i>Advanced Materials</i> , 2020 , 32, e2000960	24	11
331	A Foldable All-Ceramic Air Filter Paper with High Efficiency and High-Temperature Resistance. <i>Nano Letters</i> , 2020 , 20, 4993-5000	11.5	27
330	A large-area AgNW-modified textile with high-performance electromagnetic interference shielding. <i>Npj Flexible Electronics</i> , 2020 , 4,	10.7	26
329	Ionic Sensing Hydrogels: Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications (Adv. Funct. Mater. 12/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070080	15.6	1
328	Large-scale blow spinning of heat-resistant nanofibrous air filters. Nano Research, 2020, 13, 861-867	10	19
327	Black ZrO2 synthesized by molten lithium reduction strategy for photocatalytic hydrogen generation. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 4035-4042	3.8	8
326	Noble-Metal-Free Ni-W-O-Derived Catalysts for High-Capacity Hydrogen Production from Hydrazine Monohydrate. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8,	8.3	9
325	Reversible Switching between Nonporous and Porous Phases of a New SIFSIX Coordination Network Induced by a Flexible Linker Ligand. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6896-	6 ¹ 904	20

324	Strong Second Harmonic Generation in a Tungsten Bronze Oxide by Enhancing Local Structural Distortion. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7480-7486	16.4	18
323	Rapid Thermal Annealing toward High-Quality 2D Cobalt Fluoride Oxide as an Advanced Oxygen Evolution Electrocatalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6905-6913	8.3	30
322	Blowspinning: A New Choice for Nanofibers. ACS Applied Materials & Distribution (12), 33447-33	346 4	24
321	High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte. <i>Nature Sustainability</i> , 2020 , 3, 386-390	22.1	23
320	Metal-Based Nanocatalysts: Metal-Based Nanocatalysts via a Universal Design on Cellular Structure (Adv. Sci. 3/2020). <i>Advanced Science</i> , 2020 , 7, 2070013	13.6	2
319	Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation. Journal of Applied Polymer Science, 2020 , 137, 49103	2.9	16
318	Large Enhancement of Magnetocaloric and Barocaloric Effects by Hydrostatic Pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-Type Structure. <i>Chemistry of Materials</i> , 2020 , 32, 1807-1818	9.6	10
317	Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 1909616	15.6	16
316	A core-shell structured CoMoOEHO@CoFeOOH nanocatalyst for electrochemical evolution of oxygen. <i>Electrochimica Acta</i> , 2020 , 345, 136125-136125	6.7	4
315	A Review on Anode Side Interface Stability Micromechanisms and Engineering for Garnet Electrolyte-based Solid-state Batteries. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 351-359	2.2	5
314	An Ultramicroporous Metal-Organic Framework for High Sieving Separation of Propylene from Propane. <i>Journal of the American Chemical Society</i> , 2020 , 142, 17795-17801	16.4	67
313	A calix[4]resorcinarene-based giant coordination cage: controlled assembly and iodine uptake. <i>Chemical Communications</i> , 2020 , 56, 2491-2494	5.8	14
312	Mixed Metal-Organic Framework with Multiple Binding Sites for Efficient C H /CO Separation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4396-4400	16.4	169
311	Engineering microporous ethane-trapping metal®rganic frameworks for boosting ethane/ethylene separation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3613-3620	13	55
310	Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds. <i>Materials Horizons</i> , 2020 , 7, 804-810	14.4	9
309	Metallo-N-Heterocycles - A new family of hydrogen storage material. <i>Energy Storage Materials</i> , 2020 , 26, 198-202	19.4	11
308	Highly Robust, Flexible, and Large-Scale 3D-Metallized Sponge for High-Performance Electromagnetic Interference Shielding. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900761	6.8	36
307	Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 633-640	16.4	86

(2019-2020)

306	Replacement reaction-assisted synthesis of silver nanoparticles by jet for conductive ink. <i>Nanotechnology</i> , 2020 , 31, 115301	3.4	3	
305	Metal Nanoparticle Harvesting by Continuous Rotating Electrodeposition and Separation. <i>Matter</i> , 2020 , 3, 1294-1307	12.7	8	
304	Porous organic cages as synthetic water channels. <i>Nature Communications</i> , 2020 , 11, 4927	17.4	17	
303	Effect of HO Molecules on Thermal Expansion of TiCo(CN). <i>Inorganic Chemistry</i> , 2020 , 59, 14852-14855	5.1	8	
302	Aqueous Solution Blow Spinning of Seawater-Stable Polyamidoxime Nanofibers from Water-Soluble Precursor for Uranium Extraction from Seawater. <i>Small Methods</i> , 2020 , 4, 2000558	12.8	10	
301	Structural and Dynamical Properties of Potassium Dodecahydro-monocarba-closo-dodecaborate: KCB11H12. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17992-18002	3.8	10	
300	Solid Electrolytes: A Garnet-Type Solid-Electrolyte-Based Molten Lithium Molybdenum Iron(II) Chloride Battery with Advanced Reaction Mechanism (Adv. Mater. 32/2020). Advanced Materials, 2020, 32, 2070242	24	1	
299	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. <i>Nature Communications</i> , 2020 , 11, 3732	17.4	64	
298	Boosting the Performance of Nitrogen-Doped Mesoporous Carbon Oxygen Electrode with Ultrathin 2D Iron/Cobalt Selenides. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000740	4.6	7	
297	Direct electroplating of Ag nanowires using superionic conductors. <i>Nanoscale Horizons</i> , 2020 , 5, 89-94	10.8	O	
296	Neutron diffraction study on hydrostatic pressure regulated magnetostructural transition and magnetocaloric effect in MnNi1 [kFexSi1 [lyGey alloys. <i>Journal of Applied Physics</i> , 2020 , 127, 133905	2.5	1	
295	A Flexible, Robust, and Gel-Free Electroencephalogram Electrode for Noninvasive Brain-Computer Interfaces. <i>Nano Letters</i> , 2019 , 19, 6853-6861	11.5	80	
294	Facile and High-Yield Replacement Reaction-Assisted Synthesis of Silver Dendrites by Jet for Conductive Ink. <i>Langmuir</i> , 2019 , 35, 12400-12406	4	9	
293	Direct immobilization of an atomically dispersed Pt catalyst by suppressing heterogeneous nucleation at 🛮 0°C. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25779-25784	13	47	
292	Enhanced Wear Performance of Cu-Carbon Nanotubes Composite Coatings Prepared by Jet Electrodeposition. <i>Materials</i> , 2019 , 12,	3.5	10	
291	-60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. <i>Nature Communications</i> , 2019 , 10, 606	17.4	87	
290	Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction. <i>Chemical Science</i> , 2019 , 10, 2830-2836	9.4	58	
289	A metalBrganic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3128-3134	13	82	

288	Room temperature Mg reduction of TiO: formation mechanism and application in photocatalysis. <i>Chemical Communications</i> , 2019 , 55, 7675-7678	5.8	9
287	Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. <i>Nature</i> , 2019 , 570, 91-95	50.4	247
286	Postsynthetic Metalation of a Robust Hydrogen-Bonded Organic Framework for Heterogeneous Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8737-8740	16.4	82
285	Targeted Heating of Enzyme Systems Based on Photothermal Materials. <i>ChemBioChem</i> , 2019 , 20, 2467-	-2,4873	3
284	Direct spray-coating of highly robust and transparent Ag nanowires for energy saving windows. <i>Nano Energy</i> , 2019 , 62, 111-116	17.1	131
283	Ultrafine Fe/Fe3C nanoparticles on nitrogen-doped mesoporous carbon by low-temperature synthesis for highly efficient oxygen reduction. <i>Electrochimica Acta</i> , 2019 , 313, 255-260	6.7	10
282	Scalable manufacturing and applications of nanofibers. <i>Materials Today</i> , 2019 , 28, 98-113	21.8	57
281	A Marine-Inspired Hybrid Sponge for Highly Efficient Uranium Extraction from Seawater. <i>Advanced Functional Materials</i> , 2019 , 29, 1901009	15.6	71
280	Large Piezoelectric Strain in Sub-10 Nanometer Two-Dimensional Polyvinylidene Fluoride Nanoflakes. <i>ACS Nano</i> , 2019 , 13, 4496-4506	16.7	26
279	Structural evolution and phase diagram of the superconducting iron selenides Lix(C2H8N2)yFe2Se2(x=0~0.8). <i>Physical Review B</i> , 2019 , 99,	3.3	7
278	Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. <i>Npj Flexible Electronics</i> , 2019 , 3,	10.7	107
277	Tunable titanium metalBrganic frameworks with infinite 1D TiD rods for efficient visible-light-driven photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11928-11933	13	153
276	Cu-TiO2 composites with high incorporated and uniform distributed TiO2 particles prepared by jet electrodeposition. <i>Surface Engineering</i> , 2019 , 35, 1048-1054	2.6	8
275	Direct Blow Spinning of Flexible and Transparent Ag Nanofiber Heater. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900045	6.8	12
274	Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. <i>Nano Research</i> , 2019 , 12, 2150-2163	10	51
273	Draw-spun, photonically annealed Ag fibers as alternative electrodes for flexible CIGS solar cells. Science and Technology of Advanced Materials, 2019, 20, 26-34	7.1	2
272	Low-Temperature Rotational Tunneling of Tetrahydroborate Anions in Lithium Benzimidazolate-Borohydride Li2(blm)BH4. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20789-20799	3.8	3

(2018-2019)

270	Ice as Solid Electrolyte To Conduct Various Kinds of Ions. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12569-12573	16.4	24
269	Ice as Solid Electrolyte To Conduct Various Kinds of Ions. <i>Angewandte Chemie</i> , 2019 , 131, 12699-12703	3.6	6
268	High purity copper nanoparticles via sonoelectrochemical approach. <i>Materials Research Express</i> , 2019 , 6, 115058	1.7	8
267	Fe3O4/Nitrogen-Doped Carbon Electrodes from Tailored Thermal Expansion toward Flexible Solid-State Asymmetric Supercapacitors. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901250	4.6	5
266	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium-Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. <i>ACS Applied Materials & Materials (Amp)</i> : Interfaces, 2019 , 11, 45118-45125	9.5	17
265	Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn3Co0.61Mn0.39N compound. <i>Physical Review Materials</i> , 2019 , 3,	3.2	1
264	Structural and reorientational dynamics of tetrahydroborate (BH) and tetrahydrofuran (THF) in a Mg(BH) 3THF adduct: neutron-scattering characterization. <i>Physical Chemistry Chemical Physics</i> , 2019 , 22, 368-378	3.6	3
263	Tin Oxide Nanofiber and 3D Sponge Structure by Blow Spinning. <i>IOP Conference Series: Earth and Environmental Science</i> , 2019 , 358, 052015	0.3	3
262	In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 292-298	21.8	53
261	Experimental study of the effects of soil pH and ionic species on the electro-osmotic consolidation of kaolin. <i>Journal of Hazardous Materials</i> , 2019 , 368, 885-893	12.8	20
2 60	Boosting the Electrocatalytic Water Oxidation Performance of CoFeO Nanoparticles by Surface Defect Engineering. <i>ACS Applied Materials & Defect Engineering</i> . <i>ACS Applied Materials & Defect Engineering</i> . 11, 3978-3983	9.5	52
259	Rational Design of Ultrasmall Au Nanoparticles on Fe via Galvanic Replacement Under B 0 °C for Efficient Methanol Oxidation Reaction Catalyst. <i>ACS Applied Energy Materials</i> , 2019 , 2, 468-476	6.1	1
258	Surface Engineering of Perovskite Oxide for Bifunctional Oxygen Electrocatalysis. <i>Small Methods</i> , 2019 , 3, 1800279	12.8	23
257	InnenrEktitelbild: Ice Melting to Release Reactants in Solution Syntheses (Angew. Chem. 13/2018). <i>Angewandte Chemie</i> , 2018 , 130, 3579-3579	3.6	О
256	Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO Combined with Ultrahigh Uptake Capacity. <i>ACS Applied Materials & Materials (Materials Amp; Interfaces</i> , 2018 , 10, 16628-16635	9.5	61
255	High-Temperature Particulate Matter Filtration with Resilient Yttria-Stabilized ZrO Nanofiber Sponge. <i>Small</i> , 2018 , 14, e1800258	11	53
254	Tuning defects in oxides at room temperature by lithium reduction. <i>Nature Communications</i> , 2018 , 9, 1302	17.4	225
253	Ultrahigh Room-Temperature Photoluminescence from Few to Single Quintuple Layer Bi2Te3 Nanosheets. <i>Advanced Optical Materials</i> , 2018 , 6, 1701322	8.1	17

252	Bilayer SiO2 Nanorod Arrays as Omnidirectional and Thermally Stable Antireflective Coating. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700942	3.5	9
251	Room-temperature processing of silver submicron fiber mesh for flexible electronics. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	8
250	Ice Melting to Release Reactants in Solution Syntheses. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3354-3359	16.4	24
249	A Single-Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anion-Pillared Ultramicroporous Materials. <i>Advanced Materials</i> , 2018 , 30, 1705374	24	92
248	Ice Melting to Release Reactants in Solution Syntheses. <i>Angewandte Chemie</i> , 2018 , 130, 3412-3417	3.6	8
247	Large-area, transferable sub-10 nm polymer membranes at the airWater interface. <i>Nano Research</i> , 2018 , 11, 3833-3843	10	2
246	Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3426-3433	8.3	22
245	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4596-4603	16.4	115
244	Large-scale blow spinning of carbon microfiber sponge as efficient and recyclable oil sorbent. <i>Chemical Engineering Journal</i> , 2018 , 343, 638-644	14.7	29
243	Numerical Assessment of Equivalent Radius for Electrokinetic Geosynthetics Electrodes during Electroosmotic Consolidation. <i>International Journal of Geomechanics</i> , 2018 , 18, 04018024	3.1	5
242	Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 1677-1683	3.8	31
241	Li NH-LiBH: a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction. <i>Chemistry - A European Journal</i> , 2018 , 24, 1342-1347	4.8	10
240	Mechanically robust antireflective coatings. Nano Research, 2018, 11, 1699-1713	10	15
239	Omnidirectional SiO2 AR Coatings. <i>Coatings</i> , 2018 , 8, 210	2.9	3
238	Solution-Based, Template-Assisted Realization of Large-Scale Graphitic ZnO. ACS Nano, 2018, 12, 7554-	7 56. †	13
237	Biodegradable Batteries: A Fully Biodegradable Battery for Self-Powered Transient Implants (Small 28/2018). <i>Small</i> , 2018 , 14, 1870129	11	1
236	Visualizing Structural Transformation and Guest Binding in a Flexible Metal-Organic Framework under High Pressure and Room Temperature. <i>ACS Central Science</i> , 2018 , 4, 1194-1200	16.8	29
235	Highly Dispersed Platinum on Honeycomb-like [email´protected] Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2018 , 8, 8866-8872	13.1	93

234	Copper reduced defective TiO2 nanoparticles with enhanced visible light photocatalytic activity. Journal of the American Ceramic Society, 2018 , 101, 4857-4863	3.8	4
233	Nature of Decahydro-closo-decaborate Anion Reorientations in an Ordered Alkali-Metal Salt: Rb2B10H10. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 15198-15207	3.8	7
232	Phase separation and zero thermal expansion in antiperovskite Mn3Zn0.77Mn0.19N0.94: An in situ neutron diffraction investigation. <i>Scripta Materialia</i> , 2018 , 146, 18-21	5.6	1
231	Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. <i>Nano Research</i> , 2018 , 11, 751-761	10	60
230	Transition from antiferromagnetic ground state to robust ferrimagnetic order with Curie temperatures above 420 K in manganese-based antiperovskite-type structures. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13336-13344	7.1	4
229	Innovative lithium storage enhancement in cation-deficient anatase via layered oxide hydrothermal transformation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24232-24244	13	10
228	Carbon-coated cobalt molybdenum oxide as a high-performance electrocatalyst for hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 23101-23108	6.7	6
227	Neutron radiation on tin anodes of lithium-ion batteries. <i>Radiation Effects and Defects in Solids</i> , 2018 , 173, 1068-1074	0.9	4
226	Uranium Extraction: Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent (Adv. Energy Mater. 33/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870143	21.8	2
225	A Metal-Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15183-15188	16.4	83
224	Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16020-16025	16.4	121
223	Molecular sieving of ethylene from ethane using a rigid metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 1128-1133	27	326
222	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. <i>Science</i> , 2018 , 362, 443-446	33.3	478
221	Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent. <i>Advanced Energy Materials</i> , 2018 , 8, 1802607	21.8	136
220	Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12940-12946	16.4	186
219	A Fully Biodegradable Battery for Self-Powered Transient Implants. <i>Small</i> , 2018 , 14, e1800994	11	69
218	An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. <i>Nature Energy</i> , 2018 , 3, 732-738	62.3	126
217	HfO2 Nanorod Array as High-Performance and High-Temperature Antireflective Coating. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600892	4.6	9

216	Feasibility study on the application of coal gangue as landfill liner material. <i>Waste Management</i> , 2017 , 63, 161-171	8.6	67
215	Continuous Draw Spinning of Extra-Long Silver Submicron Fibers with Micrometer Patterning Capability. <i>Nano Letters</i> , 2017 , 17, 1883-1891	11.5	34
214	Defects enhanced photocatalytic performances in SrTiO3 using laser-melting treatment. <i>Journal of Materials Research</i> , 2017 , 32, 748-756	2.5	20
213	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8292-8296	13	50
212	Draw-Spinning of Kilometer-Long and Highly Stretchable Polymer Submicrometer Fibers. <i>Advanced Science</i> , 2017 , 4, 1600480	13.6	8
211	Scalable Synthesis of 2D Si Nanosheets. <i>Advanced Materials</i> , 2017 , 29, 1701777	24	54
210	Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition. <i>Chemistry - A European Journal</i> , 2017 , 23, 9766-9771	4.8	18
209	Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges. <i>Science Advances</i> , 2017 , 3, e1603170	14.3	123
208	Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN) -based Prussian Blue Analogue Induced by Guest Species. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9023-902	28 ^{6.4}	69
207	Versatile Assembly of Metal-Coordinated Calix[4]resorcinarene Cavitands and Cages through Ancillary Linker Tuning. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7648-7656	16.4	65
206	Antireflective coatings with enhanced adhesion strength. <i>Nanoscale</i> , 2017 , 9, 11047-11054	7.7	21
205	Ultrahigh and Selective SO Uptake in Inorganic Anion-Pillared Hybrid Porous Materials. <i>Advanced Materials</i> , 2017 , 29, 1606929	24	127
204	Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material. Journal of the American Chemical Society, 2017 , 139, 8022-8028	16.4	263
203	Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. Journal of the American Chemical Society, 2017, 139, 7733-7736	16.4	177
202	Comparison of the Coordination of BF, BCl, and BH to Na in the Solid State: Crystal Structures and Thermal Behavior of Na(BF), Na(HO)(BF), Na(BCl), and Na(HO)(BCl). <i>Inorganic Chemistry</i> , 2017 , 56, 4369	-4379	29
201	A facile fabrication method for ultrathin NiO/Ni nanosheets as a high-performance electrocatalyst for the oxygen evolution reaction. <i>RSC Advances</i> , 2017 , 7, 18539-18544	3.7	9
200	Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. <i>Nano Energy</i> , 2017 , 35, 207-214	17.1	74
199	Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium Metal Anode. <i>ACS Applied Materials & Discreta (Materials & Materials & Mater</i>	9.5	43

(2017-2017)

198	Direct Blow-Spinning of Nanofibers on a Window Screen for Highly Efficient PM Removal. <i>Nano Letters</i> , 2017 , 17, 1140-1148	11.5	187
197	AlO Encapsulated Teflon Nanostructures with High Thermal Stability and Efficient Antireflective Performance. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 36327-36337	9.5	17
196	Flexible Electrodes: Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows (Adv. Mater. 41/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
195	A flexible metalBrganic framework with a high density of sulfonic acid sites for proton conduction. <i>Nature Energy</i> , 2017 , 2, 877-883	62.3	377
194	Construction of ntt-Type Metal®rganic Framework from C2-Symmetry Hexacarboxylate Linker for Enhanced Methane Storage. <i>Crystal Growth and Design</i> , 2017 , 17, 4795-4800	3.5	11
193	Roll-to-Roll Production of Transparent Silver-Nanofiber-Network Electrodes for Flexible Electrochromic Smart Windows. <i>Advanced Materials</i> , 2017 , 29, 1703238	24	198
192	Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. <i>Science China Materials</i> , 2017 , 60, 849-856	7.1	17
191	Latent Porosity in Alkali-Metal MBF Salts: Structures and Rapid Room-Temperature Hydration/Dehydration Cycles. <i>Inorganic Chemistry</i> , 2017 , 56, 12023-12041	5.1	9
190	Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities. <i>Chemical Communications</i> , 2017 , 53, 11150-11153	5.8	58
189	Lowering Band Gap of an Electroactive Metal-Organic Framework via Complementary Guest Intercalation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 32413-32417	9.5	59
188	Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metalBrganic framework. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18984-18988	13	68
187	Fine Tuning of MOF-505 Analogues To Reduce Low-Pressure Methane Uptake and Enhance Methane Working Capacity. <i>Angewandte Chemie</i> , 2017 , 129, 11584-11588	3.6	20
186	High-T superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. <i>Chemical Communications</i> , 2017 , 53, 9729-9732	5.8	31
185	Ultrathin Bi Nanosheets with Superior Photoluminescence. <i>Small</i> , 2017 , 13, 1701349	11	72
184	Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19168-19174	13	47
183	OrderDisorder Transitions and Superionic Conductivity in the Sodium nido-Undeca(carba)borates. <i>Chemistry of Materials</i> , 2017 , 29, 10496-10509	9.6	39
182	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. <i>Advanced Materials</i> , 2017 , 29, 1704210	24	213
181	Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. <i>Nature Communications</i> , 2017 , 8, 1490	17.4	219

180	Reusable DNA-functionalized-graphene for ultrasensitive mercury (II) detection and removal. <i>Biosensors and Bioelectronics</i> , 2017 , 87, 129-135	11.8	47
179	Analytical Solution for Electroosmotic Consolidation Considering Nonlinear Variation of Soil Parameters. <i>International Journal of Geomechanics</i> , 2017 , 17, 06016032	3.1	13
178	Geotechnical Properties of Mine Tailings. <i>Journal of Materials in Civil Engineering</i> , 2017 , 29, 04016220	3	40
177	Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation. <i>APL Materials</i> , 2017 , 5, 106102	5.7	11
176	The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB9H10. <i>Journal of Solid State Chemistry</i> , 2016 , 243, 162-167	3.3	10
175	Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. <i>Nano Letters</i> , 2016 , 16, 5846-51	11.5	67
174	Highly Flexible Indium Tin Oxide Nanofiber Transparent Electrodes by Blow Spinning. <i>ACS Applied Materials & Mater</i>	9.5	31
173	Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance. <i>Nano Research</i> , 2016 , 9, 3839-3847	10	7
172	Enhanced Electron Collection in Perovskite Solar Cells Employing Thermoelectric NaCo O /TiO Coaxial Nanofibers. <i>Small</i> , 2016 , 12, 5146-5152	11	15
171	2D Metals by Repeated Size Reduction. <i>Advanced Materials</i> , 2016 , 28, 8170-8176	24	53
170	Hydrogen carriers. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	394
169	Porous TiNbO microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. <i>Nanoscale</i> , 2016 , 8, 18792-18799	7.7	78
168	Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. <i>Nature Communications</i> , 2016 , 7, 12543	17.4	56
167	A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. <i>RSC Advances</i> , 2016 , 6, 107158-107162	3.7	11
166	New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8320-3	16.4	88
165	Large magnetocaloric effect in Er12Co7 compound and the enhancement of IFWHM by Ho-substitution. <i>Journal of Alloys and Compounds</i> , 2016 , 680, 617-622	5.7	20
164	A transparent, conducting tape for flexible electronics. <i>Nano Research</i> , 2016 , 9, 917-924	10	31
163	Photothermal therapy by using titanium oxide nanoparticles. <i>Nano Research</i> , 2016 , 9, 1236-1243	10	70

(2016-2016)

162	Fast lithium-ionic conduction in a new complex hydride-sulphide crystalline phase. <i>Chemical Communications</i> , 2016 , 52, 564-6	5.8	28
161	Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper. <i>Materials</i> , 2016 , 10,	3.5	19
160	Mechanical characteristics of mine tailings and seismic responds of tailing reservoir. <i>Japanese Geotechnical Society Special Publication</i> , 2016 , 2, 2633-2637	0.2	3
159	Effect of electrode material on electro-osmotic consolidation of bentonite. <i>Japanese Geotechnical Society Special Publication</i> , 2016 , 2, 2027-2032	0.2	2
158	Baromagnetic Effect in Antiperovskite Mn3 Ga0.95 N0.94 by Neutron Powder Diffraction Analysis. <i>Advanced Materials</i> , 2016 , 28, 3761-7	24	41
157	Effects of Electro-Osmosis on the Physical and Chemical Properties of Bentonite. <i>Journal of Materials in Civil Engineering</i> , 2016 , 28, 06016010	3	17
156	Lithium-Ion Battery Cycling for Magnetism Control. <i>Nano Letters</i> , 2016 , 16, 583-7	11.5	54
155	A Mott insulator continuously connected to iron pnictide superconductors. <i>Nature Communications</i> , 2016 , 7, 13879	17.4	28
154	Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality. <i>Physical Review X</i> , 2016 , 6,	9.1	16
153	Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1⊠N. <i>Applied Physics Letters</i> , 2016 , 108, 041908	3.4	12
152	Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures. <i>Energy Storage Materials</i> , 2016 , 4, 79-83	19.4	70
151	Thermal Expansion and Second Harmonic Generation Response of the Tungsten Bronze Pb2AgNb5O15. <i>Inorganic Chemistry</i> , 2016 , 55, 2864-9	5.1	6
150	Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination. <i>ACS Applied Materials & Desalination (Materials & Desalination</i>	9.5	141
149	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. <i>Science</i> , 2016 , 353, 141-4	33.3	783
148	Sandwich electrode designed for high performance lithium-ion battery. <i>Nanoscale</i> , 2016 , 8, 9511-6	7.7	15
147	A heatproof separator for lithium-ion battery based on nylon66 nanofibers. <i>Ionics</i> , 2016 , 22, 731-734	2.7	8
146	UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5678-84	16.4	351
145	Liquid-Like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature. <i>Advanced Energy Materials</i> , 2016 , 6, 1502237	21.8	148

144	Development of potential organic-molecule-based hydrogen storage materials: Converting CN bond-breaking thermolysis of guanidine to NH bond-breaking dehydrogenation. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 18542-18549	6.7	5
143	Microporous Diaminotriazine-Decorated Porphyrin-Based Hydrogen-Bonded Organic Framework: Permanent Porosity and Proton Conduction. <i>Crystal Growth and Design</i> , 2016 , 16, 5831-5835	3.5	77
142	High-Performance Real-Time SERS Detection with Recyclable Ag Nanorods@HfO Substrates. <i>ACS Applied Materials & Detection and Section 2016</i> , 8, 27162-27168	9.5	54
141	Cycling of a Lithium-Ion Battery with a Silicon Anode Drives Large Mechanical Actuation. <i>Advanced Materials</i> , 2016 , 28, 10236-10243	24	33
140	2D Metals: 2D Metals by Repeated Size Reduction (Adv. Mater. 37/2016). Advanced Materials, 2016 , 28, 8169-8169	24	1
139	Textured LiFePO4 Bulk with Enhanced Electrical Conductivity. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 3214-3216	3.8	4
138	A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties. <i>Journal of Solid State Chemistry</i> , 2016 , 242, 186-192	3.3	7
137	Invar-like Behavior of Antiperovskite Mn3+xNi1NN Compounds. <i>Chemistry of Materials</i> , 2015 , 27, 2495-2	25908	60
136	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. Journal of the American Chemical Society, 2015 , 137, 9963-70	16.4	254
135	Reduction of graphene oxide in Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18360-18364	13	26
134	Porous metal b rganic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. <i>Energy and Environmental Science</i> , 2015 , 8, 2504-2511	35.4	107
133	Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires. <i>Nano Letters</i> , 2015 , 15, 5513-8	11.5	13
132	Lithium amidoborane hydrazinates: synthesis, structure and hydrogen storage properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10100-10106	13	9
131	Oxide Semiconductors: Arc-Melting to Narrow the Bandgap of Oxide Semiconductors (Adv. Mater. 16/2015). <i>Advanced Materials</i> , 2015 , 27, 2675-2675	24	
130	High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. <i>RSC Advances</i> , 2015 , 5, 33607-33614	3.7	25
129	Structural Behavior of Li2B10H10. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6481-6487	3.8	31
128	The structure of monoclinic Na2B10H10: a combined diffraction, spectroscopy, and theoretical approach. <i>CrystEngComm</i> , 2015 , 17, 3533-3540	3.3	21
127	Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10114-10118	13	18

(2015-2015)

126	Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires. <i>Nature Communications</i> , 2015 , 6, 8354	17.4	32
125	Filling the Gaps between Graphene Oxide: A General Strategy toward Nanolayered Oxides. <i>Advanced Functional Materials</i> , 2015 , 25, 5683-5690	15.6	27
124	Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. <i>Energy and Environmental Science</i> , 2015 , 8, 3637-3645	35.4	183
123	Frustrated Triangular Magnetic Structures of Mn3ZnN: Applications in Thermal Expansion. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24983-24990	3.8	19
122	Solgel synthesis of mesoporous spherical zirconia. <i>RSC Advances</i> , 2015 , 5, 104629-104634	3.7	13
121	Synthesis, structures and dehydrogenation of magnesium borohydridellthylenediamine composites. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 412-419	6.7	21
120	A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 574-7	16.4	137
119	Copper-substituted iron telluride: A phase diagram. <i>Physical Review B</i> , 2015 , 91,	3.3	3
118	Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. <i>Scientific Reports</i> , 2015 , 5, 18027	4.9	83
117	Antiperovskite Chalco-Halides Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br with Spin Super-Super Exchange. <i>Scientific Reports</i> , 2015 , 5, 15910	4.9	9
116	SiOx Nanodandelion by Laser Ablation for Anode of Lithium-Ion Battery. Small, 2015, 11, 6009-12	11	31
115	Buckled Tin Oxide Nanobelt Webs as Highly Stretchable and Transparent Photosensors. <i>Small</i> , 2015 , 11, 5712-8	11	34
114	Giant magnetoresistance in the half-metallic double-perovskite ferrimagnet Mn2FeReO6. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12069-73	16.4	73
113	Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. <i>Nature Communications</i> , 2015 , 6, 7328	17.4	326
112	Transport and Exchange Behavior of Ions in Bentonite During Electro-Osmotic Consolidation. <i>Clays and Clay Minerals</i> , 2015 , 63, 395-403	2.1	14
111	Glass fiber fabric mat as the separator for lithium-ion battery with high safety performance. <i>Ionics</i> , 2015 , 21, 3135-3139	2.7	25
110	Direct writing of half-meter long CNT based fiber for flexible electronics. <i>Nano Letters</i> , 2015 , 15, 1609-1	4 1.5	40
109	Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1746-9	16.4	130

108	An iodide-based Li7P2S8I superionic conductor. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1384-7	16.4	228
107	Structure and thermal expansion of the tungsten bronze PbkNbD\(\textit{D}\)\(D	4.3	24
106	An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 135-43	3.6	28
105	Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. <i>Advanced Materials</i> , 2014 , 26, 7622-6	24	179
104	Synthesis, thermal behavior, and dehydrogenation kinetics study of lithiated ethylenediamine. <i>Chemistry - A European Journal</i> , 2014 , 20, 13636-43	4.8	11
103	High conductivity of La2Zr2O7 nanofibers by phase control. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1855-1861	13	34
102	Structure, phase transition, and controllable thermal expansion behaviors of Sc(2-x)Fe(x)MoDO Inorganic Chemistry, 2014 , 53, 9206-12	5.1	11
101	Alkali Metal Hydride Modification on Hydrazine Borane for Improved Dehydrogenation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 11244-11251	3.8	24
100	Structure and properties of ENaFeO2-type ternary sodium iridates. <i>Journal of Solid State Chemistry</i> , 2014 , 210, 195-205	3.3	12
99	A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6207-10	16.4	278
98	A flexible and transparent ceramic nanobelt network for soft electronics. <i>NPG Asia Materials</i> , 2014 , 6, e86-e86	10.3	41
97	Ordered structure and thermal expansion in tungsten bronze Pb K (0.5)Li(0.5)Nb D II <i>Inorganic Chemistry</i> , 2014 , 53, 9174-80	5.1	23
96	Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96. <i>Acta Materialia</i> , 2014 , 74, 58-65	8.4	39
95	Improving battery safety by early detection of internal shorting with a bifunctional separator. <i>Nature Communications</i> , 2014 , 5, 5193	17.4	233
94	Lithiated primary aminea new material for hydrogen storage. <i>Chemistry - A European Journal</i> , 2014 , 20, 6632-5	4.8	13
93	Numerical model of soft ground improvement by vertical drain combined with vacuum preloading. Journal of Central South University, 2013 , 20, 2066-2071	2.1	4
92	Structure and magnetic properties of the ENaFeO2-type honeycomb compound Na3Ni2BiO6. <i>Inorganic Chemistry</i> , 2013 , 52, 13605-11	5.1	48
91	Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. <i>Nature Communications</i> , 2013 , 4, 2522	17.4	244

90	New high T(c) multiferroics KBiFeDIwith narrow band gap and promising photovoltaic effect. <i>Scientific Reports</i> , 2013 , 3, 1265	4.9	160
89	Metal cation-promoted hydrogen generation in activated aluminium borohydride ammoniates. <i>Acta Materialia</i> , 2013 , 61, 4787-4796	8.4	24
88	Exceptional Mechanical Stability of Highly Porous Zirconium Metal-Organic Framework UiO-66 and Its Important Implications. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 925-30	6.4	283
87	Nanoconfined ammonia borane in a flexible metal®rganic framework FeMIL-53: clean hydrogen release with fast kinetics. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4167	13	62
86	A transparent electrode based on a metal nanotrough network. <i>Nature Nanotechnology</i> , 2013 , 8, 421-5	28.7	749
85	Alkali and alkaline-earth metal borohydride hydrazinates: synthesis, structures and dehydrogenation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10487-93	3.6	20
84	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. <i>Nature Communications</i> , 2013 , 4, 1943	17.4	971
83	Evolution of the Reorientational Motions of the Tetrahydroborate Anions in Hexagonal LiBH4[lil Solid Solution by High-Q Quasielastic Neutron Scattering. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 12010-12018	3.8	35
82	Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. <i>Journal of the American Chemical Society</i> , 2013 , 135, 105	2 5 -32	902
81	Li2(NH2BH3)(BH4)/LiNH2BH3: The first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 197-2	647	11
80	Magnetic structure of bixbyite EMn2O3: A combined DFT+U and neutron diffraction study. <i>Physical Review B</i> , 2013 , 87,	3.3	48
79	TiN Nanofibers: A New Material with High Conductivity and Transmittance for Transparent Conductive Electrodes. <i>Advanced Functional Materials</i> , 2013 , 23, 209-214	15.6	34
78	High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature. <i>Chemistry - A European Journal</i> , 2012 , 18, 1901-4	4.8	127
77	Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. <i>Journal of Advanced Ceramics</i> , 2012 , 1, 2-23	10.7	193
76	A simple and efficient approach to synthesize amidoborane ammoniates: case study for Mg(NH2BH3)2(NH3)3 with unusual coordination structure. <i>Journal of Materials Chemistry</i> , 2012 , 22, 131	74	16
75	Monoammoniate of calcium amidoborane: synthesis, structure, and hydrogen-storage properties. <i>Inorganic Chemistry</i> , 2012 , 51, 1599-603	5.1	27
74	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. <i>Nature Communications</i> , 2012 , 3, 954	17.4	615
73	Raman, FTIR, photoacoustic-infrared, and inelastic neutron scattering spectra of ternary metal hydride salts A2MH5, (A = Ca, Sr, Eu; M = Ir, Rh) and their deuterides. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 2490-6	2.8	4

72	LiBH4•NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 10750-1075	76.7	32
71	Structures of the strontium and barium dodecahydro-closo-dodecaborates. <i>Journal of Alloys and Compounds</i> , 2012 , 514, 71-75	5.7	14
70	Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. <i>Nature Nanotechnology</i> , 2012 , 7, 310-5	28.7	1831
69	Engineering empty space between Si nanoparticles for lithium-ion battery anodes. <i>Nano Letters</i> , 2012 , 12, 904-9	11.5	602
68	Metal hydrazinoborane LiN2H3BH3 and LiN2H3BH3•2N2H4BH3: crystal structures and high-extent dehydrogenation. <i>Energy and Environmental Science</i> , 2012 , 5, 7531	35.4	55
67	Borohydride hydrazinates: high hydrogen content materials for hydrogen storage. <i>Energy and Environmental Science</i> , 2012 , 5, 5686-5689	35.4	59
66	A robust microporous metal B rganic framework constructed from a flexible organic linker for highly selective sorption of methanol over ethanol and water. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10352		18
65	Carbon capture in metal®rganic frameworks® comparative study. <i>Energy and Environmental Science</i> , 2011 , 4, 2177	35.4	312
64	Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bulletin, 2011, 36, 760-765	5 3.2	399
63	Paper supercapacitors by a solvent-free drawing method. <i>Energy and Environmental Science</i> , 2011 , 4, 3368	35.4	263
62	Evidence of a transition to reorientational disorder in the cubic alkali-metal dodecahydro-closo-dodecaborates. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 3110-3116	3.3	24
61	Dehydrogenation tuning of ammine borohydrides using double-metal cations. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4690-3	16.4	95
60	Silicontarbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity. <i>Advanced Energy Materials</i> , 2011 , 1, 523-527	21.8	206
59	Lithium-Ion Textile Batteries with Large Areal Mass Loading. <i>Advanced Energy Materials</i> , 2011 , 1, 1012-	10178	205
58	A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3178-81	16.4	321
57	Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. <i>Chemistry - A European Journal</i> , 2011 , 17, 6043-7	4.8	8o
56	Sodium magnesium amidoborane: the first mixed-metal amidoborane. <i>Chemical Communications</i> , 2011 , 47, 4102-4	5.8	66
55	Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes. Journal of the American Chemical Society, 2011 , 133, 27-9	16.4	85

(2009-2011)

54	Low-temperature tunneling and rotational dynamics of the ammonium cations in (NH4)2B12H12. <i>Journal of Chemical Physics</i> , 2011 , 135, 094501	3.9	12
53	Photocatalytic and Magnetic Properties of the Fe-TiO2/SnO2 Nanofiber Via Electrospinning. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 605-608	3.8	37
52	Facile Synthesis of Heterostructured ZnOInS Nanocables and Enhanced Photocatalytic Activity. Journal of the American Ceramic Society, 2010 , 93, 3384-3389	3.8	54
51	Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010 , 4, 5843-8	16.7	703
50	Printed energy storage devices by integration of electrodes and separators into single sheets of paper. <i>Applied Physics Letters</i> , 2010 , 96, 183502	3.4	171
49	Adsorption Sites and Binding Nature of CO2 in Prototypical Metal©rganic Frameworks: A Combined Neutron Diffraction and First-Principles Study. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1946-1951	6.4	235
48	High performance surface-enhanced Raman scattering substrate combining low dimensional and hierarchical nanostructures. <i>Langmuir</i> , 2010 , 26, 6865-8	4	14
47	Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1NdxFeO3 (0.15ND.25). <i>Physical Review B</i> , 2010 , 81,	3.3	106
46	A new family of metal borohydride ammonia borane complexes: Synthesis, structures, and hydrogen storage properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6550		62
45	Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?. <i>Chemistry - A European Journal</i> , 2010 , 16, 5205-14	4.8	208
44	Structural stability and elastic properties of prototypical covalent organic frameworks. <i>Chemical Physics Letters</i> , 2010 , 499, 103-107	2.5	46
43	Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8. <i>Nanotechnology</i> , 2009 , 20, 204002	3.4	33
42	High Tc in Electrospun BaTiO3 Nanofibers. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2162-2164	13.8	43
41	Preparation of Necklace-Structured TiO2/SnO2 Hybrid Nanofibers and Their Photocatalytic Activity. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 2463-2466	3.8	41
40	Enhanced UV photoresponse from heterostructured Ag@nO nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 172103	3.4	101
39	Enhanced Photocatalysis of Electrospun Ag¤nO Heterostructured Nanofibers. <i>Chemistry of Materials</i> , 2009 , 21, 3479-3484	9.6	478
38	High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4995-5000	16.4	485
37	Crystal Chemistry and Dehydrogenation/Rehydrogenation Properties of Perovskite Hydrides RbMgH3 and RbCaH3. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15091-15098	3.8	15

36	Methane Sorption in Nanoporous Metal Drganic Frameworks and First-Order Phase Transition of Confined Methane. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3029-3035	3.8	110
35	Electrical behavior of electrospun heterostructured AgInO nanofibers. <i>Applied Physics Letters</i> , 2009 , 95, 112104	3.4	17
34	Crystal Chemistry of Perovskite-Type Hydride NaMgH3: Implications for Hydrogen Storage. <i>Chemistry of Materials</i> , 2008 , 20, 2335-2342	9.6	46
33	Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 15268-9	16.4	470
32	Neutron Powder Diffraction of (Nd7/12Li1/4)TiO3 Nano-Checkerboard Superlattices. <i>Chemistry of Materials</i> , 2008 , 20, 2860-2862	9.6	26
31	Structure of ternary imide Li2Ca(NH)2 and hydrogen storage mechanisms in amide-hydride system. <i>Journal of the American Chemical Society</i> , 2008 , 130, 6515-22	16.4	65
30	Quasi-free methyl rotation in zeolitic imidazolate framework-8. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 12602-6	2.8	68
29	Structures and Crystal Chemistry of Li2BNH6 and Li4BN3H10. <i>Chemistry of Materials</i> , 2008 , 20, 1245-124	43 .6	65
28	Raman, FTIR, photoacoustic-FTIR and inelastic neutron scattering spectra of alkaline earth and lanthanide salts of hexahydridoruthenate(II), A2RuH6, (A = Ca, Sr, Eu) and their deuterides. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 6936-8	2.8	9
27	Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14834-9	16.4	231
26	Biomimetic nanofiber patterns with controlled wettability. Soft Matter, 2008, 4, 2429	3.6	133
25	Strategies for the improvement of the hydrogen storage properties of metal hydride materials. <i>ChemPhysChem</i> , 2008 , 9, 2157-62	3.2	42
24	Nanowire-Based High-Performance Micro Fuel Cells One Nanowire, One Fuel Cell. <i>Advanced Materials</i> , 2008 , 20, 1644-1648	24	109
23	Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure. <i>Chemical Physics Letters</i> , 2008 , 460, 432-437	2.5	13
22	ZnO Nanofiber Field-Effect Transistor Assembled by Electrospinning. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 656-659	3.8	89
21	Hydrogen Storage In A Novel Destabilized Hydride System, Ca2SiHx: Effects of Amorphization. <i>Chemistry of Materials</i> , 2007 , 19, 329-334	9.6	28
20	Hydrogen storage in a prototypical zeolitic imidazolate framework-8. <i>Journal of the American Chemical Society</i> , 2007 , 129, 5314-5	16.4	357
19	Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties. <i>Chemistry of Materials</i> , 2007 , 19, 3506-3511	9.6	266

18	Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge). <i>Acta Crystallographica Section B: Structural Science</i> , 2007 , 63, 63-8		27
17	Morphological Control of Centimeter Long Aluminum-Doped Zinc Oxide Nanofibers Prepared by Electrospinning. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 71-76	3.8	41
16	Preparation of ZnS Nanofibers Via Electrospinning. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 3664-3666	3.8	16
15	Structure and polarization in the high Tc ferroelectric Bi(Zn,Ti)O3-PbTiO3 solid solutions. <i>Physical Review Letters</i> , 2007 , 98, 107601	7.4	118
14	Neutron vibrational spectroscopy and first-principles calculations of the ternary hydrides Li4Si2H(D) and Li4Ge2H(D): Electronic structure and lattice dynamics. <i>Physical Review B</i> , 2007 , 76,	3.3	17
13	Structure and hydrogenation properties of the ternary alloys Ca2園MgxSi (0 弦 印). <i>Journal of Alloys and Compounds</i> , 2007 , 446-447, 101-105	5.7	13
12	Hydrogen and Methane Adsorption in Metal Drganic Frameworks: A High-Pressure Volumetric Study. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 16131-16137	3.8	406
11	Fabrication, assembly, and electrical characterization of CuO nanofibers. <i>Applied Physics Letters</i> , 2006 , 89, 133125	3.4	111
10	Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: I. Substitution of Ba3W2O9. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060428035	142030	-???
9	Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: II. Compositional Variations in Pure BZN. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060428035142025-???	3.8	11
8	Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: III. Effect of the Muffling Environment. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060428035142002-???	3.8	1
7	Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics. IV. Tuning fland the Part Size Dependence of QfL <i>Journal of the American Ceramic Society</i> , 2006 , 89, 060428035142007-???	3.8	
6	Ordered perovskites in the A2+(Li1/4Nb3/4)O3A2+(Li2/5W3/5)O3 (A2+=Sr, Ca) systems. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 4305-4315	3.3	9
5	Non-stoichiometric 1:2 ordered perovskites in the Ba(Li1/4Nb3/4)O3 B a(Li2/5W3/5)O3 system. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 3469-3478	3.3	12
4	Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. <i>Chemistry of Materials</i> ,	9.6	4
3	One-dimensional electrospun ceramic nanomaterials and their sensing applications. <i>Journal of the American Ceramic Society</i> ,	3.8	2
2	A garnet-electrolyte based molten Li-I2 battery with high performance. Nano Research,1	10	1
1	Mass Production of Hierarchically Designed Engine-Intake Air Filters by Multinozzle Electroblow Spinning. <i>Nano Letters</i> ,	11.5	O