Yueh-Lin Loo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446862/publications.pdf

Version: 2024-02-01

191 11,840 56
papers citations h-index

194 194 194 14237 all docs docs citations times ranked citing authors

102

g-index

#	Article	IF	CITATIONS
1	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	11.1	104
2	Epitaxially crystallized polyethylene exhibiting <scp>nearâ€equilibrium</scp> melting temperatures*. Polymer Engineering and Science, 2022, 62, 841-847.	1.5	2
3	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	6.0	216
4	The Emerging Role of Halogen Bonding in Hybrid Perovskite Photovoltaics. Chemistry of Materials, 2022, 34, 2495-2502.	3.2	29
5	Design of UV-Absorbing Donor Molecules for Nearly Imperceptible Organic Solar Cells. ACS Energy Letters, 2022, 7, 180-188.	8.8	14
6	Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. Journal of Physical Chemistry C, 2022, 126, 9784-9793.	1.5	9
7	Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 2022, 377, 307-310.	6.0	121
8	A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nature Communications, 2022, 13, .	5.8	16
9	Coronene derivatives for transparent organic photovoltaics through inverse materials design. Journal of Materials Chemistry C, 2021, 9, 1310-1317.	2.7	12
10	Photocurrent in Metal-Halide Perovskite/Organic Semiconductor Heterostructures: Impact of Microstructure on Charge Generation Efficiency. ACS Applied Materials & Interfaces, 2021, 13, 10231-10238.	4.0	14
11	The Effects of Chromophore Halogenation on the Stability of UVâ€Absorbing Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100225.	10.2	15
12	Postdeposition Processing Influences the Relative Contributions of Electronic and Ionic Seebeck Effects in the Thermoelectric Response of Conducting Polymers. Journal of Physical Chemistry C, 2021, 125, 12289-12296.	1.5	5
13	Chemical and Structural Degradation of CH 3 NH 3 Pbl 3 Propagate from PEDOT:PSS Interface in the Presence of Humidity. Advanced Materials Interfaces, 2021, 8, 2100505.	1.9	2
14	Optical simulations to inform the design of UV-absorbing organic materials and solar cells. Solar Energy Materials and Solar Cells, 2021, 227, 111114.	3.0	4
15	A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling. Journal of Physical Chemistry Letters, 2021, 12, 9308-9314.	2.1	5
16	Grazing-incidence X-ray diffraction tomography for characterizing organic thin films. Journal of Applied Crystallography, 2021, 54, 1327-1339.	1.9	5
17	Solventâ€Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains. Advanced Electronic Materials, 2021, 7, 2000792.	2.6	10
18	Role of Postdeposition Thermal Annealing on Intracrystallite and Intercrystallite Structuring and Charge Transport in Poly(3-hexylthiophene). ACS Applied Materials & Samp; Interfaces, 2021, 13, 999-1007.	4.0	19

#	Article	IF	Citations
19	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2021, , eabj2637.	6.0	2
20	lt's time to focus on organic solar cell stability. Nature Energy, 2020, 5, 947-949.	19.8	138
21	Gap States in Methylammonium Lead Halides: The Link to Dimethylsulfoxide?. Advanced Materials, 2020, 32, e2003482.	11.1	21
22	A hole-transport material that also passivates perovskite surface defects for solar cells with improved efficiency and stability. Energy and Environmental Science, 2020, 13, 4334-4343.	15.6	147
23	Tuning Organic Semiconductor Alignment and Aggregation via Nanoconfinement. Journal of Physical Chemistry C, 2020, 124, 22799-22807.	1.5	6
24	Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Letters, 2020, 20, 8880-8889.	4.5	114
25	Sulfur-Donor Solvents Strongly Coordinate Pb ²⁺ in Hybrid Organic–Inorganic Perovskite Precursor Solutions. Journal of Physical Chemistry C, 2020, 124, 14496-14502.	1.5	38
26	Fluorination of a polymer donor through the trifluoromethyl group for high-performance polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 12149-12155.	5.2	12
27	Unraveling the Elastic Properties of (Quasi)Two-Dimensional Hybrid Perovskites: A Joint Experimental and Theoretical Study. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17881-17892.	4.0	21
28	Circumventing Macroscopic Phase Separation in Immiscible Polymer Mixtures by Bottom-up Deposition. Macromolecules, 2020, 53, 5740-5746.	2.2	5
29	The Role of Tie Chains on the Mechanoâ€Electrical Properties of Semiconducting Polymer Films. Advanced Electronic Materials, 2020, 6, 1901070.	2.6	21
30	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
31	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	1.8	5
32	Organic Electronic Devices With Water-Dispersible Conducting Polymers., 2019,, 1-34.		0
33	The Polymer Physics of Multiscale Charge Transport in Conjugated Systems. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1559-1571.	2.4	73
34	Tunable Properties of MAPLE-Deposited Thin Films in the Presence of Suppressed Segmental Dynamics. ACS Macro Letters, 2019, 8, 1115-1121.	2.3	9
35	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
36	Impact of Atomistic Substitution on Thin-Film Structure and Charge Transport in a Germanyl-ethynyl Functionalized Pentacene. Chemistry of Materials, 2019, 31, 6615-6623.	3.2	24

#	Article	IF	Citations
37	Humidity and Strain Rate Determine the Extent of Phase Shift in the Piezoresistive Response of PEDOT:PSS. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16888-16895.	4.0	12
38	Exploring Crystal Structure in Ethyneâ€Substituted Pentacenes, and Their Elaboration into Crystalline Dehydro[18]annulenes. Helvetica Chimica Acta, 2019, 102, e1900026.	1.0	1
39	Acid-Catalyzed Reactions Activate DMSO as a Reagent in Perovskite Precursor Inks. Chemistry of Materials, 2019, 31, 2114-2120.	3.2	33
40	Solvent–Molecule Interactions Govern Crystal-Habit Selection in Naphthalene Tetracarboxylic Diimides. Chemistry of Materials, 2019, 31, 9691-9698.	3.2	6
41	Highâ€Voltage Photogeneration Exclusively via Aggregationâ€Induced Triplet States in a Heavyâ€Atomâ€Free Nonplanar Organic Semiconductor. Advanced Energy Materials, 2019, 9, 1901649.	10.2	4
42	Perovskite Solar Cells: Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ∈Infrared with a Narrowâ∈Bandgap Organic Semiconductor (Adv. Mater. 49/2019). Advanced Materials, 2019, 31, 1970349.	11.1	1
43	Computationally aided design of a high-performance organic semiconductor: the development of a universal crystal engineering core. Chemical Science, 2019, 10, 10543-10549.	3.7	22
44	Data Mining for Parameters Affecting Polymorph Selection in Contorted Hexabenzocoronene Derivatives. Chemistry of Materials, 2018, 30, 3330-3337.	3.2	9
45	Semiconducting SWNTs sorted by polymer wrapping: How pure are they?. Applied Physics Letters, 2018, 112, 072106.	1.5	14
46	Determination of the Molecular Weight of Conjugated Polymers with Diffusion-Ordered NMR Spectroscopy. Chemistry of Materials, 2018, 30, 570-576.	3.2	44
47	Tuning Morphology and Melting Temperature in Polyethylene Films by MAPLE. Macromolecules, 2018, 51, 512-519.	2.2	11
48	Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation. ACS Energy Letters, 2018, 3, 92-97.	8.8	273
49	Bandâ€ike Charge Photogeneration at a Crystalline Organic Donor/Acceptor Interface. Advanced Energy Materials, 2018, 8, 1701494.	10.2	23
50	Assessing the Huang–Brown Description of Tie Chains for Charge Transport in Conjugated Polymers. ACS Macro Letters, 2018, 7, 1333-1338.	2.3	79
51	Enhancing the Thermal Stability of Organic Field-Effect Transistors by Electrostatically Interlocked 2D Molecular Packing. Chemistry of Materials, 2018, 30, 3638-3642.	3.2	21
52	Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs. Journal of the American Chemical Society, 2018, 140, 7519-7525.	6.6	29
53	Striking the right balance of intermolecular coupling for high-efficiency singlet fission. Chemical Science, 2018, 9, 6240-6259.	3.7	97
54	Precursor Solution Annealing Forms Cubicâ€Phase Perovskite and Improves Humidity Resistance of Solar Cells. Advanced Functional Materials, 2018, 28, 1801508.	7.8	15

#	Article	IF	CITATIONS
55	Influence of Bulky Organoâ€Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Lightâ€Emitting Devices. Advanced Functional Materials, 2018, 28, 1802060.	7.8	76
56	Contorted Octabenzocircumbiphenyl Sorts Semiconducting Single-Walled Carbon Nanotubes with Structural Specificity. Chemistry of Materials, 2017, 29, 595-604.	3.2	2
57	Understanding the Crystal Packing and Organic Thinâ€Film Transistor Performance in Isomeric Guest–Host Systems. Advanced Materials, 2017, 29, 1700048.	11.1	24
58	Electrical Stress Influences the Efficiency of CH ₃ NH ₃ PbI ₃ Perovskite Light Emitting Devices. Advanced Materials, 2017, 29, 1605317.	11.1	105
59	Photoluminescence of Functionalized Germanium Nanocrystals Embedded in Arsenic Sulfide Glass. ACS Applied Materials & Diterfaces, 2017, 9, 18911-18917.	4.0	10
60	Timeâ€Dependent Mechanical Response of APbX ₃ (A = Cs, CH ₃ NH ₃ ; X) 7	j etoq0 0	0 rgBT /Ove
61	Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination. Chemistry of Materials, 2017, 29, 4311-4316.	3.2	16
62	Pyridalthiadiazole acceptor-functionalized triarylboranes with multi-responsive optoelectronic characteristics. Chemical Science, 2017, 8, 5497-5505.	3.7	58
63	Tuning the Magnitude and the Polarity of the Piezoresistive Response of Polyaniline through Structural Control. ACS Applied Materials & Structural Control	4.0	9
64	Mayer Bond Order as a Metric of Complexation Effectiveness in Lead Halide Perovskite Solutions. Chemistry of Materials, 2017, 29, 2435-2444.	3.2	82
65	Formation of Organic Alloys in Ternary-Blend Solar Cells with Two Acceptors Having Energy-Level Offsets Exceeding 0.4 eV. ACS Energy Letters, 2017, 2, 2149-2156.	8.8	26
66	Polarâ€Electrodeâ€Bridged Electroluminescent Displays: 2D Sensors Remotely Communicating Optically. Advanced Materials, 2017, 29, 1703552.	11.1	49
67	Beyond Doping and Charge Balancing: How Polymer Acid Templates Impact the Properties of Conducting Polymer Complexes. Journal of Physical Chemistry Letters, 2017, 8, 4530-4539.	2.1	13
68	Solution-processable, crystalline material for quantitative singlet fission. Materials Horizons, 2017, 4, 915-923.	6.4	56
69	Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nature Energy, 2017, 2, .	19.8	195
70	Eliminating Piezoresistivity in Flexible Conducting Polymers for Accurate Temperature Sensing under Dynamic Mechanical Deformations. Small, 2016, 12, 2832-2838.	5.2	17
71	Understanding Polymorph Transformations in Coreâ€Chlorinated Naphthalene Diimides and their Impact on Thinâ€Film Transistor Performance. Advanced Functional Materials, 2016, 26, 2357-2364.	7.8	42
72	Low-carbon "drop-in replacement―transportation fuels from non-food biomass and natural gas. Applied Energy, 2016, 183, 1722-1730.	5.1	13

#	Article	IF	Citations
73	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. ACS Nano, 2016, 10, 4847-4856.	7.3	52
74	Impact of a Low Concentration of Dopants on the Distribution of Gap States in a Molecular Semiconductor. Chemistry of Materials, 2016, 28, 2677-2684.	3.2	29
75	Liquid Crystals: High Performance OTFTs Fabricated Using a Calamitic Liquid Crystalline Material of $2\hat{a}\in (4\hat{a}\in \mathbb{D})$ Dodecyl phenyl)[1]benzothieno[3,2 $\hat{a}\in (1\hat{a})$ 0][1]benzothiophene (Adv. Electron. Mater. 9/2016). Advanced Electronic Materials, 2016, 2, .	2.6	2
76	Mapping the Competition between Exciton Dissociation and Charge Transport in Organic Solar Cells. ACS Applied Materials & Discourse (2016, 8, 28743-28749).	4.0	12
77	Revealing the Full Charge Transfer State Absorption Spectrum of Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1601001.	10.2	33
78	Crystalline Intermediates and Their Transformation Kinetics during the Formation of Methylammonium Lead Halide Perovskite Thin Films. Chemistry of Materials, 2016, 28, 9041-9048.	3.2	29
79	High Performance OTFTs Fabricated Using a Calamitic Liquid Crystalline Material of 2â€(4â€Dodecyl) Tj ETQq1 I	. 0.78431 [.]	4 rgBT /Overl
80	[<i>d</i>]-Carbon–carbon double bond engineering in diazaphosphepines: a pathway to modulate the chemical and electronic structures of heteropines. Chemical Science, 2016, 7, 4211-4219.	3.7	33
81	Cooperative Assembly of Phosphole Lipids and Single-Walled Carbon Nanotubes. Chemistry of Materials, 2016, 28, 8407-8414.	3.2	8
82	Enhancing Carrier Mobilities in Organic Thin-Film Transistors Through Morphological Changes at the Semiconductor/Dielectric Interface Using Supercritical Carbon Dioxide Processing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31144-31153.	4.0	12
83	Polymorphism: Understanding Polymorph Transformations in Core-Chlorinated Naphthalene Diimides and their Impact on Thin-Film Transistor Performance (Adv. Funct. Mater. 14/2016). Advanced Functional Materials, 2016, 26, 2395-2395.	7.8	0
84	Influence of heteroatoms on the charge mobility of anthracene derivatives. Journal of Materials Chemistry C, 2016, 4, 3517-3522.	2.7	34
85	Additive Growth and Crystallization of Polymer Films. Macromolecules, 2016, 49, 2860-2867.	2.2	17
86	Contorted Hexabenzocoronenes with Extended Heterocyclic Moieties Improve Visible-Light Absorption and Performance in Organic Solar Cells. Chemistry of Materials, 2016, 28, 673-681.	3.2	34
87	Tuning kinetic competitions to traverse the rich structural space of organic semiconductor thin films. MRS Communications, 2015, 5, 407-421.	0.8	13
88	Capillary effects in guided crystallization of organic thin films. APL Materials, 2015, 3, .	2.2	6
89	Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Advanced Materials, 2015, 27, 5102-5112.	11.1	372
90	Structural Origins for Tunable Open ircuit Voltage in Ternaryâ€Blend Organic Solar Cells. Advanced Functional Materials, 2015, 25, 5557-5563.	7.8	115

#	Article	IF	Citations
91	Quantifying the Energy Barriers and Elucidating the Charge Transport Mechanisms across Interspherulite Boundaries in Solutionâ€Processed Organic Semiconductor Thin Films. Advanced Functional Materials, 2015, 25, 5662-5668.	7.8	24
92	Temperatureâ€Dependent Electrical Transport in Polymerâ€Sorted Semiconducting Carbon Nanotube Networks. Advanced Functional Materials, 2015, 25, 105-110.	7.8	39
93	The effect of regioisomerism on the crystal packing and device performance of desymmetrized anthradithiophenes. Journal of Materials Chemistry C, 2015, 3, 8956-8962.	2.7	8
94	Bi2S3 nanowire networks as electron acceptor layers in solution-processed hybrid solar cells. Journal of Materials Chemistry C, 2015, 3, 2686-2692.	2.7	53
95	Halogenation of a Nonplanar Molecular Semiconductor to Tune Energy Levels and Bandgaps for Electron Transport. Chemistry of Materials, 2015, 27, 1892-1900.	3.2	55
96	Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells. Advanced Materials Interfaces, 2015, 2, 1400532.	1.9	174
97	An all-conjugated gradient copolymer approach for morphological control of polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20174-20184.	5.2	28
98	Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nature Communications, 2015, 6, 8242.	5.8	525
99	Fluorinated and hydrogenated self-assembled monolayers (SAMs) on anodes: Effects of SAM chemistry on device characteristics of polymer solar cells. Organic Electronics, 2014, 15, 3333-3340.	1.4	10
100	Solar Cells: Donorâ€Acceptor Interfacial Interactions Dominate Device Performance in Hybrid P3HTâ€ZnO Nanowireâ€Array Solar Cells (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .	10.2	1
101	Enhanced Chargeâ€Carrier Injection and Collection Via Lamination of Doped Polymer Layers pâ€Doped with a Solutionâ€Processible Molybdenum Complex. Advanced Functional Materials, 2014, 24, 2197-2204.	7.8	77
102	Face-on stacking and enhanced out-of-plane hole mobility in graphene-templated copper phthalocyanine. Chemical Communications, 2014, 50, 5319-5321.	2.2	56
103	Structural origin of anisotropic transport in electrically conducting dichloroacetic acid-treated polymers. Organic Electronics, 2014, 15, 631-638.	1.4	8
104	Directing the film structure of organic semiconductors via post-deposition processing for transistor and solar cell applications. Energy and Environmental Science, 2014, 7, 592-608.	15.6	75
105	Isoindigo-Containing Molecular Semiconductors: Effect of Backbone Extension on Molecular Organization and Organic Solar Cell Performance. Chemistry of Materials, 2014, 26, 6570-6577.	3.2	28
106	<i>The Diffraction Pattern Calculator</i> (<i>DPC</i>) toolkit: a user-friendly approach to unit-cell lattice parameter identification of two-dimensional grazing-incidence wide-angle X-ray scattering data. Journal of Applied Crystallography, 2014, 47, 2090-2099.	1.9	30
107	Effect of ozone exposure on the electrical characteristics of high-purity, large-diameter semiconducting carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 10861-10865.	1.3	7
108	Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14533-14542.	4.0	29

#	Article	IF	Citations
109	Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy. Journal of Materials Chemistry C, 2014, 2, 3118-3128.	2.7	46
110	Tuning Polymorphism and Orientation in Organic Semiconductor Thin Films via Post-deposition Processing. Journal of the American Chemical Society, 2014, 136, 15749-15756.	6.6	89
111	Tuning the Morphology of All-Polymer OPVs through Altering Polymer–Solvent Interactions. Chemistry of Materials, 2014, 26, 5020-5027.	3.2	54
112	Donorâ€Acceptor Interfacial Interactions Dominate Device Performance in Hybrid P3HTâ€ZnO Nanowireâ€Array Solar Cells. Advanced Energy Materials, 2014, 4, 1400585.	10.2	36
113	Efficient Organic Solar Cells with Helical Perylene Diimide Electron Acceptors. Journal of the American Chemical Society, 2014, 136, 15215-15221.	6.6	414
114	Solvent-type-dependent polymorphism and charge transport in a long fused-ring organic semiconductor. Nanoscale, 2014, 6, 449-456.	2.8	59
115	Sputtered ZnO seed layer enhances photovoltaic behavior in hybrid ZnO/P3HT solar cells. Organic Electronics, 2013, 14, 3477-3483.	1.4	22
116	Manipulating structure and enhancing conductivity of polymer acid doped polyaniline by exploiting redox chemistry. Thin Solid Films, 2013, 539, 303-308.	0.8	4
117	Tuning Contact Recombination and Open-Circuit Voltage in Polymer Solar Cells via Self-Assembled Monolayer Adsorption at the Organic–Metal Oxide Interface. Journal of Physical Chemistry C, 2013, 117, 20474-20484.	1.5	39
118	Post-deposition Processing Methods To Induce Preferential Orientation in Contorted Hexabenzocoronene Thin Films. ACS Nano, 2013, 7, 294-300.	7.3	50
119	Using Self-Organization To Control Morphology in Molecular Photovoltaics. Journal of the American Chemical Society, 2013, 135, 2207-2212.	6.6	126
120	Electronic structure and carrier transport at laminated polymer homojunctions. Organic Electronics, 2013, 14, 149-155.	1.4	15
121	Supersized contorted aromatics. Chemical Science, 2013, 4, 2018.	3.7	141
122	Benzo[1,2-b:6,5-b′]dithiophene(dithiazole)-4,5-dione derivatives: synthesis, electronic properties, crystal packing and charge transport. Journal of Materials Chemistry C, 2013, 1, 1467.	2.7	23
123	Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells. Applied Physics Letters, 2013, 102, 103302.	1.5	12
124	Comment on "Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cells― Advanced Energy Materials, 2013, 3, 1537-1538.	10.2	3
125	Orientation-Independent Charge Transport in Single Spherulites from Solution-Processed Organic Semiconductors. Journal of the American Chemical Society, 2012, 134, 5436-5439.	6.6	45
126	Phase behavior of gradient copolymer solutions: a Monte Carlo simulation study. Soft Matter, 2012, 8, 6471.	1.2	24

#	Article	IF	CITATIONS
127	Quantifying Resistances across Nanoscale Low- and High-Angle Interspherulite Boundaries in Solution-Processed Organic Semiconductor Thin Films. ACS Nano, 2012, 6, 9879-9886.	7.3	48
128	Organic transistors with high thermal stability for medical applications. Nature Communications, 2012, 3, 723.	5.8	290
129	Modular construction and deconstruction of organic solar cells. AICHE Journal, 2012, 58, 3280-3288.	1.8	6
130	Understanding Heterogeneous Nucleation in Binary, Solution-Processed, Organic Semiconductor Thin Films. Chemistry of Materials, 2012, 24, 2920-2928.	3.2	25
131	Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photonics, 2012, 6, 327-332.	15.6	346
132	Guiding Crystallization around Bends and Sharp Corners. Advanced Materials, 2012, 24, 2692-2698.	11.1	62
133	Molecular Orientation: Guiding Crystallization around Bends and Sharp Corners (Adv. Mater.) Tj ETQq1 1 0.78431	14 rgBT /C 11:1	overlock 10
134	Tail Stateâ€Assisted Charge Injection and Recombination at the Electronâ€Collecting Interface of P3HT:PCBM Bulkâ€Heterojunction Polymer Solar Cells. Advanced Energy Materials, 2012, 2, 1447-1455.	10.2	24
135	Influence of gradient strength and composition profile on the onset of the cloud point transition in hydroxyethyl methacrylate/dimethylaminoethyl methacrylate gradient copolymers. Polymer, 2012, 53, 1131-1137.	1.8	26
136	From Monolayer to Multilayer Nâ€Channel Polymeric Fieldâ€Effect Transistors with Precise Conformational Order. Advanced Materials, 2012, 24, 951-956.	11.1	109
137	Isomerically pure electron-deficient anthradithiophenes and their acceptor performance in polymer solar cells. Chemical Communications, 2011, 47, 7617.	2.2	38
138	Device Characteristics of Bulk-Heterojunction Polymer Solar Cells are Independent of Interfacial Segregation of Active Layers. Chemistry of Materials, 2011, 23, 2020-2023.	3.2	71
139	Mesostructures of Polyaniline Films Affect Polyelectrochromic Switching. Chemistry of Materials, 2011, 23, 4402-4409.	3.2	23
140	Annealing Sequence Dependent Open-Circuit Voltage of Inverted Polymer Solar Cells Attributable to Interfacial Chemical Reaction between Top Electrodes and Photoactive Layers. Langmuir, 2011, 27, 11265-11271.	1.6	14
141	Electronic structure of the poly(3-hexylthiophene):indene-C60 bisadduct bulk heterojunction. Journal of Applied Physics, 2011, 110, 043719.	1.1	44
142	Modular construction of P3HT/PCBM planar-heterojunction solar cells by lamination allows elucidation of processing–structure–function relationships. Organic Electronics, 2011, 12, 1963-1972.	1.4	18
143	Cloud point suppression in dilute solutions of model gradient copolymers with prespecified composition profiles. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 629-637.	2.4	24
144	Supramolecular Order of Solutionâ€Processed Perylenediimide Thin Films: Highâ€Performance Smallâ€Channel nâ€Type Organic Transistors. Advanced Functional Materials, 2011, 21, 4479-4486.	7.8	38

#	Article	IF	Citations
145	Organic Transistors: Supramolecular Order of Solution-Processed Perylenediimide Thin Films: High-Performance Small-Channel n-Type Organic Transistors (Adv. Funct. Mater. 23/2011). Advanced Functional Materials, 2011, 21, 4478-4478.	7.8	1
146	Structural Complexities in the Active Layers of Organic Electronics. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 59-78.	3.3	72
147	Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend. Organic Electronics, 2010, 11, 1779-1785.	1.4	211
148	Small-Molecule Thiophene-C ₆₀ Dyads As Compatibilizers in Inverted Polymer Solar Cells. Chemistry of Materials, 2010, 22, 5762-5773.	3.2	68
149	Reversible Soft-Contact Lamination and Delamination for Non-Invasive Fabrication and Characterization of Bulk-Heterojunction and Bilayer Organic Solar Cells. Chemistry of Materials, 2010, 22, 4931-4938.	3.2	45
150	Unusual Molecular Conformations in Fluorinated, Contorted Hexabenzocoronenes. Organic Letters, 2010, 12, 4840-4843.	2.4	42
151	Polyaniline Exhibiting Stable and Reversible Switching in the Visible Extending into the Near-IR in Aqueous Media. Chemistry of Materials, 2010, 22, 2333-2340.	3.2	32
152	Directly patternable, highly conducting polymers for broad applications in organic electronics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5712-5717.	3.3	127
153	Engineering the organic semiconductor-electrode interface in polymer solar cells. Journal of Materials Chemistry, 2010, 20, 6604.	6.7	51
154	Oxidation of silver electrodes induces transition from conventional to inverted photovoltaic characteristics in polymer solar cells. Applied Physics Letters, 2009, 95, 183301.	1.5	69
155	Altering the Thermodynamics of Phase Separation in Inverted Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2009, 21, 3110-3115.	11.1	75
156	Controlling Nucleation and Crystallization in Solutionâ€Processed Organic Semiconductors for Thinâ€Film Transistors. Advanced Materials, 2009, 21, 3605-3609.	11.1	141
157	Organic Thin-Film Transistors: Controlling Nucleation and Crystallization in Solution-Processed Organic Semiconductors for Thin-Film Transistors (Adv. Mater. 35/2009). Advanced Materials, 2009, 21, NA-NA.	11.1	0
158	Sequence of annealing polymer photoactive layer influences the air stability of inverted solar cells. Organic Electronics, 2009, 10, 1483-1488.	1.4	19
159	Polymer Conductivity through Particle Connectivity. Chemistry of Materials, 2009, 21, 1948-1954.	3.2	30
160	Polymer Acid Doped Polyaniline Is Electrochemically Stable Beyond pH 9. Chemistry of Materials, 2009, 21, 280-286.	3.2	121
161	Cobaltocene-Doped Viologen as Functional Components in Organic Electronics. Chemistry of Materials, 2009, 21, 4583-4588.	3.2	45
162	Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer. Applied Physics Letters, 2009, 94, 113302.	1.5	145

#	Article	IF	CITATIONS
163	Temperature-induced ordering and gelation of star micelles based on ABA triblocks synthesized via aqueous RAFT polymerization. Soft Matter, 2009, 5, 2179.	1.2	16
164	Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene. Applied Physics Letters, 2008, 93, .	1.5	116
165	Narrowing the size distribution of the polymer acid improves PANI conductivity. Journal of Materials Chemistry, 2008, 18, 3129.	6.7	51
166	Near-monodispersed polyaniline particles through template synthesis and simultaneous doping with diblock copolymers of PMA and PAAMPSA. Journal of Materials Chemistry, 2008, 18, 5835.	6.7	18
167	Ultra-low-κ materials derived from poly(<scp>d</scp> , <scp>l</scp> -lactide-b-pentafluorostyrene) diblock copolymers. Journal of Materials Chemistry, 2008, 18, 530-536.	6.7	35
168	Deprotecting Thioacetyl-Terminated Terphenyldithiol for Assembly on Gallium Arsenide. Langmuir, 2008, 24, 851-856.	1.6	16
169	pH Response of Model Diblock and Triblock Copolymer Networks Containing Polystyrene and Poly(2-hydroxyethyl methacrylate-co-2-(dimethylamino)ethyl methacrylate). Macromolecules, 2008, 41, 4390-4397.	2.2	29
170	Progress and Challenges in Commercialization of Organic Electronics. MRS Bulletin, 2008, 33, 653-662.	1.7	105
171	Large-area patterning of a solution-processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors. Applied Physics Letters, 2007, 90, 244103.	1.5	56
172	Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. Journal of Materials Chemistry, 2007, 17, 1268.	6.7	131
173	Establishing Efficient Electrical Contact to the Weak Crystals of Triethylsilylethynyl Anthradithiophene. Chemistry of Materials, 2007, 19, 5210-5215.	3.2	39
174	An Electron-Conducting Cross-Linked Polyaniline-Based Redox Hydrogel, Formed in One Step at pH 7.2, Wires Glucose Oxidase. Journal of the American Chemical Society, 2007, 129, 7006-7007.	6.6	110
175	Reversible Phase Transformations in Concentrated Aqueous Block Copolymer Solutions of Poly(methyl acrylate)- <i>b</i> -co-dimethylaminoethyl) Tj ETQq1 1 0.78431	. 4 .12gBT /O	væ4lock 10
176	Solution-processable organic semiconductors for thin-film transistors: Opportunities for chemical engineers. AICHE Journal, 2007, 53, 1066-1074.	1.8	44
177	Atom Transfer Radical Copolymerization of Hydroxyethyl Methacrylate and Dimethylaminoethyl Methacrylate in Polar Solvents. Macromolecules, 2006, 39, 8609-8615.	2.2	49
178	Azeotropic Atom Transfer Radical Polymerization of Hydroxyethyl Methacrylate and (Dimethylamino)ethyl Methacrylate Statistical Copolymers and Block Copolymers with Polystyrene. Macromolecules, 2006, 39, 2474-2480.	2.2	31
179	Direct patterning of conductive water-soluble polyaniline for thin-film organic electronics. Applied Physics Letters, 2005, 86, 074102.	1.5	65
180	Controlled Radical Polymerization and Copolymerization of 5-Methylene-2-phenyl-1,3-dioxolan-4-one by ATRP. Macromolecules, 2005, 38, 5581-5586.	2.2	36

Yueh-Lin Loo

#	Article	IF	CITATION
181	Dynamics of a Thermoreversible Transition between Cylindrical and Hexagonally Perforated Lamellar Mesophases. Macromolecules, 2005, 38, 7098-7104.	2.2	34
182	Solvent-Dependent Assembly of Terphenyl- and Quaterphenyldithiol on Gold and Gallium Arsenide. Langmuir, 2005, 21, 5887-5893.	1.6	53
183	A Highly Regular Hexagonally Perforated Lamellar Structure in a Quiescent Diblock Copolymer. Macromolecules, 2005, 38, 4947-4949.	2.2	50
184	Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Applied Physics Letters, 2003, 82, 793-795.	1.5	129
185	Soft, conformable electrical contacts for organic semiconductors: High-resolution plastic circuits by lamination. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10252-10256.	3.3	198
186	Modes of Crystallization in Block Copolymer Microdomains:Â Breakout, Templated, and Confined. Macromolecules, 2002, 35, 2365-2374.	2.2	426
187	Polymer Crystallization Confined in One, Two, or Three Dimensions. Macromolecules, 2001, 34, 8968-8977.	2.2	318
188	Phase behavior and viscoelastic properties of entangled block copolymer gels. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2183-2197.	2.4	67
189	Direct imaging of polyethylene crystallites within block copolymer microdomains. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2564-2570.	2.4	31
190	Polyethylene Crystal Orientation Induced by Block Copolymer Cylinders. Macromolecules, 2000, 33, 8361-8366.	2.2	80
191	Crystallization Within Block Copolymer Mesophases. , 0, , 213-243.		46