
Kohitij Kar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446787/publications.pdf Version: 2024-02-01

Κομιτιι Κλα

#	Article	IF	CITATIONS
1	Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron, 2021, 109, 164-176.e5.	8.1	76
2	Visual neuroscience in the age of big data and artificial intelligence. , 2021, , 287-304.		0
3	Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision, 2021, 21, 2489.	0.3	0
4	Transcranial alternating current stimulation attenuates BOLD adaptation and increases functional connectivity. Journal of Neurophysiology, 2020, 123, 428-438.	1.8	23
5	An Open Resource for Non-human Primate Optogenetics. Neuron, 2020, 108, 1075-1090.e6.	8.1	79
6	The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications, 2020, 11, 3886.	12.8	18
7	Neural population control via deep image synthesis. Science, 2019, 364, .	12.6	260
8	Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior. Nature Neuroscience, 2019, 22, 974-983.	14.8	305
9	A precursor of reading: Neural responses to letters strings in the untrained primate inferior temporal cortex predict word recognition behavior. Journal of Vision, 2019, 19, 172b.	0.3	0
10	Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. Journal of Neuroscience, 2018, 38, 7255-7269.	3.6	233
11	Linking image-by-image population dynamics in the macaque inferior temporal cortex to core object recognition behavior. , 2018, , .		0
12	Can Deep Neural Networks Rival Human Ability to Generalize in Core Object Recognition?. , 2018, , .		5
13	Neural Population Control via Deep ANN Image Synthesis. , 2018, , .		2
14	Mechanisms of Neuromodulation by Transcranial Current Stimulation. Journal of Vision, 2018, 18, 434.	0.3	0
15	Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation. Journal of Neuroscience, 2017, 37, 2325-2335.	3.6	49
16	Direct Experimental Validation of Computational Current Flow Models with Intra-Cranial Recordings in Human and Non-Human Primates. Brain Stimulation, 2017, 10, e15.	1.6	0
17	Testing the assumptions underlying fMRI adaptation using intracortical recordings in area MT. Cortex, 2016, 80, 21-34.	2.4	26
18	Commentary: On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Frontiers in Systems Neuroscience, 2015, 9, 148.	2.5	9

Kohitij Kar

#	Article	IF	CITATIONS
19	Social closeness and feedback modulate susceptibility to the framing effect. Social Neuroscience, 2015, 10, 35-45.	1.3	29
20	Transcranial Alternating Current Stimulation Attenuates Visual Motion Adaptation. Journal of Neuroscience, 2014, 34, 7334-7340.	3.6	55
21	tACS- What goes on inside? The neural consequences of transcranial alternating current stimulation. Brain Stimulation, 2014, 7, e12.	1.6	0
22	Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation. Journal of Neurophysiology, 2014, 111, 1397-1399.	1.8	13
23	Transcranial electrical stimulation affects adaptation of MT/V5 neurons in awake behaving macaques. Journal of Vision, 2013, 13, 357-357.	0.3	0
24	Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. Journal of Neurophysiology, 2012, 108, 2173-2178.	1.8	96
25	Effects of transcranial electrical stimulation on human motion detection. Journal of Vision, 2012, 12, 756-756.	0.3	3
26	Retinal and cortical effects of transcranial electric stimulation. Journal of Vision, 2011, 11, 764-764.	0.3	0
27	Using an animal learning model of the hippocampus to simulate human fMRI data. , 2010, , .		1
28	Fast Recurrent Processing Via Ventral Prefrontal Cortex is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. SSRN Electronic Journal, 0, , .	0.4	0