Mercedes FernÃ;ndez-Arévalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Scientific Reports, 2022, 12, 1297.	3.3	13
2	Potential use for chronic pain: Poly(Ethylene Glycol)-Poly(Lactic-Co-Glycolic Acid) nanoparticles enhance the effects of Cannabis-Based terpenes on calcium influx in TRPV1-Expressing cells. International Journal of Pharmaceutics, 2022, 616, 121524.	5.2	6
3	Development of enhanced drug delivery vehicles for three cannabis-based terpenes using poly(lactic-co-glycolic acid) based nanoparticles. Industrial Crops and Products, 2021, 164, 113345.	5.2	18
4	Potential Use of Nanomedicine for the Anti-inflammatory Treatment of Neurodegenerative Diseases. Current Pharmaceutical Design, 2018, 24, 1589-1616.	1.9	21
5	Neuroprotective effect of cannabinoids nanoplatforms in neurodegenerative diseases. Journal of Drug Delivery Science and Technology, 2017, 42, 84-93.	3.0	16
6	Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2623-2632.	3.3	35
7	Peroral Polyester Drug Delivery Systems. , 2016, , 243-289.		0
8	Lipid nanoparticles as an emerging platform for cannabinoid delivery: physicochemical optimization and biocompatibility. Drug Development and Industrial Pharmacy, 2016, 42, 190-198.	2.0	31
9	Role of Nanotechnology for Enzyme Replacement Therapy in Lysosomal Diseases. A Focus on Gaucher's Disease. Current Medicinal Chemistry, 2016, 23, 929-952.	2.4	22
10	Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	47
11	In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. International Journal of Pharmaceutics, 2015, 487, 205-212.	5.2	44
12	Engineering of î" 9 -tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids and Surfaces B: Biointerfaces, 2014, 123, 114-122.	5.0	23
13	Enhanced Cellular Uptake and Biodistribution of a Synthetic Cannabinoid Loaded in Surface-Modified Poly(lactic-co-glycolic acid) Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 1068-1079.	1.1	37
14	Statistical analysis of solid lipid nanoparticles produced by high-pressure homogenization: a practical prediction approach. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	24
15	Functional PLGA NPs for Oral Drug Delivery: Recent Strategies and Developments. Mini-Reviews in Medicinal Chemistry, 2013, 13, 58-69.	2.4	38
16	Drug Targeting to Cancer by Nanoparticles Surface Functionalized with Special Biomolecules. Current Medicinal Chemistry, 2012, 19, 3188-3195.	2.4	43
17	Use of Flow Focusing® Technology to Produce Tobramycin-Loaded Plga Microparticles for Pulmonary Drug Delivery. Medicinal Chemistry, 2012, 8, 533-540.	1.5	6
18	Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: formulation, characterization, and cytotoxicity studies. International Journal of Nanomedicine, 2012, 7, 5793.	6.7	39

#	Article	IF	CITATIONS
19	Development and Validation of an RP-HPLC Method for CB13 Evaluation in Several PLGA Nanoparticle Systems. Scientific World Journal, The, 2012, 2012, 1-9.	2.1	8
20	Insulin-loaded PLGA microparticles: flow focusing <i>versus</i> double emulsion/solvent evaporation. Journal of Microencapsulation, 2011, 28, 430-441.	2.8	37
21	Nanostructures for Drug Delivery to the Brain. Current Medicinal Chemistry, 2011, 18, 5303-5321.	2.4	43
22	Possibilities of Poly(D,L-lactide-co-glycolide) in the Formulation of Nanomedicines Against Cancer. Current Drug Targets, 2011, 12, 1096-1111.	2.1	20
23	Application of Flow Focusing to the Break-Up of a Magnetite Suspension Jet for the Production of Paramagnetic Microparticles. Journal of Nanomaterials, 2011, 2011, 1-10.	2.7	9
24	Preclinical Study of an Oral Controlled Release Naltrexone Complex in Mice. Journal of Pharmacy and Pharmacology, 2010, 52, 659-663.	2.4	3
25	Role of the electrokinetic properties on the stability of mebendazole suspensions for veterinary applications. International Journal of Pharmaceutics, 2010, 393, 162-167.	5.2	3
26	Effectiveness of repeated administration of a new oral naltrexone controlled-release system on morphine analgesia. Journal of Pharmacy and Pharmacology, 2010, 53, 1201-1205.	2.4	2
27	Making Drops in Microencapsulation Processes. Letters in Drug Design and Discovery, 2010, 7, 300-309.	0.7	10
28	Protein-loaded PLGA microparticles engineered by flow focusing: Physicochemical characterization and protein detection by reversed-phase HPLC. International Journal of Pharmaceutics, 2009, 380, 147-154.	5.2	28
29	Synthesis of lidocaine-loaded PLGA microparticles by flow focusing. International Journal of Pharmaceutics, 2008, 358, 27-35.	5.2	73
30	Development and in vitro evaluation of a controlled release formulation to produce wide dose interval morphine tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 544-549.	4.3	22
31	In vitro and in vivo Studies of a New Sustained Release Formulation of Morphine. Arzneimittelforschung, 2008, 58, 647-652.	0.4	0
32	Elaboration and "In Vitro―Characterization of 5-ASA Beads. Drug Development and Industrial Pharmacy, 2005, 31, 231-239.	2.0	18
33	In vitro evaluation of a morphine polymeric complex: Flowability behavior and dissolution study. AAPS PharmSciTech, 2004, 5, 23-29.	3.3	8
34	Development of Enteric-coated Timed-release Matrix Tablets for Colon Targeting. Journal of Drug Targeting, 2004, 12, 607-612.	4.4	43
35	Eudragit® RS-PM and Ethocel® 100 Premium: influence over the behavior of didanosine inert matrix system. Il Farmaco, 2002, 57, 649-656.	0.9	9
36	Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design. International Journal of Pharmaceutics, 2002, 237, 107-118.	5.2	69

#	Article	IF	CITATIONS
37	Development of sustained release matrix tablets of didanosine containing methacrylic and ethylcellulose polymers. International Journal of Pharmaceutics, 2002, 234, 213-221.	5.2	47
38	Validation study of the conductometrical analysis. Application to the drug release studies from controlled release systems. Journal of Pharmaceutical and Biomedical Analysis, 1998, 18, 281-285.	2.8	10
39	Influence of the pH Value of the Dissolution Medium on the Release Profiles of a Morphine Polymeric Complex. Drug Development and Industrial Pharmacy, 1997, 23, 553-559.	2.0	3
40	Application of Percolation Theory to Characterize the Release Behavior of Carteolol Matrix Systems. Drug Development and Industrial Pharmacy, 1997, 23, 1-8.	2.0	10
41	Influence of the Disintegrant on the Drug Percolation Threshold in Tablets. Drug Development and Industrial Pharmacy, 1997, 23, 665-669.	2.0	0
42	Study of a complexation process between naltrexone and Eudragit® L as an oral controlled release system. International Journal of Pharmaceutics, 1997, 148, 219-230.	5.2	8
43	Study of percolation thresholds in ternary tablets. International Journal of Pharmaceutics, 1996, 139, 177-186.	5.2	26
44	Preclinical study of a controlled release oral morphine system in rats. International Journal of Pharmaceutics, 1996, 139, 237-241.	5.2	9
45	Physical characterization of carteolol: Eudragit® L binding interaction. International Journal of Pharmaceutics, 1995, 114, 13-21.	5.2	23
46	Influence of diluents and manufacturing method on the in vitro dissolution of carteolol hydrochloride matrix tablets. International Journal of Pharmaceutics, 1995, 118, 151-160.	5.2	22
47	Use of fractal dimensions in the study of excipients: application to the characterization of modified lactoses. International Journal of Pharmaceutics, 1995, 121, 187-193.	5.2	10
48	Communications Simultaneous Hplc Determination of some Drugs Commonly Used in Cold Medications: Dextromethorphan, Dephenhydramine, Phenylephrine, Phenylpropanolamine and Pseudoephedrine. Drug Development and Industrial Pharmacy, 1995, 21, 605-613.	2.0	29
49	Morphine Polymeric Coprecipitates for Controlled Release: Elaboration and Characterization. Drug Development and Industrial Pharmacy, 1994, 20, 2409-2424.	2.0	16
50	Dissolution Rate Study of Fresh and Aging Triamterene-Urea Solid Dispersions. Drug Development and Industrial Pharmacy, 1994, 20, 2729-2740.	2.0	8
51	Study of the release mechanism of carteolol inert matrix tablets on the basis of percolation theory. International Journal of Pharmaceutics, 1994, 109, 229-236.	5.2	22
52	Percolation theory: application to the study of the release behaviour from inert matrix systems. International Journal of Pharmaceutics, 1993, 96, 175-181.	5.2	75
53	Study of thimerosal degradation mechanism. International Journal of Pharmaceutics, 1993, 89, 213-221.	5.2	11
54	Effects of different fillers and wetting liquids on the dissolution behavior of carteolol hydrochloride controlled release inert matrix tablets. International Journal of Pharmaceutics, 1993, 95, 117-125.	5.2	13

#	Article	IF	CITATIONS
55	Formulation Factors Affecting Thimerosal Stability. Drug Development and Industrial Pharmacy, 1993, 19, 1673-1691.	2.0	8
56	Blaboration and Technological Characterization of Inert Matrix Tables of Careolol Hydrochloride. Drug Development and Industrial Pharmacy, 1992, 18, 911-918.	2.0	6
57	Dissolution rate of diazepam from polyethylene glycol 6000 solid dispersions. International Journal of Pharmaceutics, 1991, 67, 201-205.	5.2	27