
## Jaco J M Zwanenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446134/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interventricular Mechanical Asynchrony in Pulmonary Arterial Hypertension. Journal of the American<br>College of Cardiology, 2008, 51, 750-757.                                                                                                   | 1.2 | 364       |
| 2  | Clinical applications of 7T MRI in the brain. European Journal of Radiology, 2013, 82, 708-718.                                                                                                                                                   | 1.2 | 219       |
| 3  | Myocardial Strain and Torsion Quantified by Cardiovascular Magnetic Resonance Tissue Tagging.<br>Journal of the American College of Cardiology, 2006, 48, 2002-2011.                                                                              | 1.2 | 189       |
| 4  | <i>In Vivo</i> Detection of Cerebral Cortical Microinfarcts with High-Resolution 7T MRI. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 322-329.                                                                                        | 2.4 | 177       |
| 5  | Subfields of the hippocampal formation at 7T MRI: In vivo volumetric assessment. NeuroImage, 2012, 61, 1043-1049.                                                                                                                                 | 2.1 | 160       |
| 6  | The Use and Pitfalls of Intracranial Vessel Wall Imaging: How We Do It. Radiology, 2018, 286, 12-28.                                                                                                                                              | 3.6 | 152       |
| 7  | Imaging Intracranial Vessel Wall Pathology With Magnetic Resonance Imaging. Circulation, 2014, 130, 192-201.                                                                                                                                      | 1.6 | 143       |
| 8  | Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain, 2016, 139, 1472-1481.                                                                                                | 3.7 | 133       |
| 9  | Intracranial Vessel Wall Imaging at 7.0-T MRI. Stroke, 2011, 42, 2478-2484.                                                                                                                                                                       | 1.0 | 123       |
| 10 | Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset<br>and late peak of shortening in lateral wall. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2004, 286, H1872-H1880. | 1.5 | 104       |
| 11 | Visualization of Perivascular Spaces and Perforating Arteries With 7 T Magnetic Resonance Imaging.<br>Investigative Radiology, 2014, 49, 307-313.                                                                                                 | 3.5 | 102       |
| 12 | Highâ€resolution magnetizationâ€prepared 3Dâ€FLAIR imaging at 7.0 Tesla. Magnetic Resonance in Medicine,<br>2010, 64, 194-202.                                                                                                                    | 1.9 | 101       |
| 13 | Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7â€T<br>quantitative flow MRI. NMR in Biomedicine, 2016, 29, 1295-1304.                                                                                   | 1.6 | 91        |
| 14 | Correction of phase offset errors in main pulmonary artery flow quantification. Journal of Magnetic Resonance Imaging, 2005, 22, 73-79.                                                                                                           | 1.9 | 89        |
| 15 | Cerebral Microbleeds on MR Imaging: Comparison between 1.5 and 7T. American Journal of Neuroradiology, 2011, 32, 1043-1049.                                                                                                                       | 1.2 | 85        |
| 16 | Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold. Magnetic Resonance in Medicine, 2003, 49, 722-730.                                                                                                           | 1.9 | 79        |
| 17 | High Prevalence of Cerebral Microbleeds at 7Tesla MRI in Patients with Early Alzheimer's Disease.<br>Journal of Alzheimer's Disease, 2012, 31, 259-263.                                                                                           | 1.2 | 78        |
| 18 | Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces.<br>Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 576-580.                                                                             | 2.4 | 76        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lesion detection at seven Tesla in multiple sclerosis using magnetisation prepared 3D-FLAIR and 3D-DIR.<br>European Radiology, 2012, 22, 221-231.                                                                    | 2.3 | 73        |
| 20 | Imaging the Intracranial Atherosclerotic Vessel Wall Using 7T MRI: Initial Comparison with<br>Histopathology. American Journal of Neuroradiology, 2015, 36, 694-701.                                                 | 1.2 | 70        |
| 21 | Automated Hippocampal Subfield Segmentation at 7T MRI. American Journal of Neuroradiology, 2016, 37, 1050-1057.                                                                                                      | 1.2 | 66        |
| 22 | Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7 T MRI and histology.<br>NeuroImage, 2016, 133, 163-175.                                                                                  | 2.1 | 66        |
| 23 | MR angiography of the cerebral perforating arteries with magnetization prepared anatomical<br>reference at 7T: Comparison with timeâ€ofâ€flight. Journal of Magnetic Resonance Imaging, 2008, 28,<br>1519-1526.      | 1.9 | 65        |
| 24 | Higher Pulsatility in Cerebral Perforating Arteries in Patients With Small Vessel Disease Related<br>Stroke, a 7T MRI Study. Stroke, 2019, 50, 62-68.                                                                | 1.0 | 65        |
| 25 | Clinical application of multi-contrast 7-T MR imaging in multiple sclerosis: increased lesion detection compared to 3ÂT confined to grey matter. European Radiology, 2013, 23, 528-540.                              | 2.3 | 64        |
| 26 | Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T. NeuroImage, 2011, 56, 1902-1907.                                                                                              | 2.1 | 59        |
| 27 | Multi-sequence whole-brain intracranial vessel wall imaging at 7.0 tesla. European Radiology, 2013, 23, 2996-3004.                                                                                                   | 2.3 | 59        |
| 28 | High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T<br>and 7T. European Radiology, 2017, 27, 1585-1595.                                                             | 2.3 | 59        |
| 29 | Fluid attenuated inversion recovery (FLAIR) MRI at 7.0 Tesla: comparison with 1.5 and 3.0ÂTesla. European<br>Radiology, 2010, 20, 915-922.                                                                           | 2.3 | 58        |
| 30 | Quantification and visualization of flow in the Circle of Willis: Timeâ€resolved threeâ€dimensional phase contrast MRI at 7 T compared with 3 T. Magnetic Resonance in Medicine, 2013, 69, 868-876.                  | 1.9 | 58        |
| 31 | Multicontrast MR Imaging at 7T in Multiple Sclerosis: Highest Lesion Detection in Cortical Gray<br>Matter with 3D-FLAIR. American Journal of Neuroradiology, 2013, 34, 791-796.                                      | 1.2 | 57        |
| 32 | Visualization of the Aneurysm Wall. Neurosurgery, 2014, 75, 614-622.                                                                                                                                                 | 0.6 | 55        |
| 33 | The Spectrum of MR Detectable Cortical Microinfarcts: A Classification Study with 7-Tesla<br>Postmortem MRI and Histopathology. Journal of Cerebral Blood Flow and Metabolism, 2015, 35,<br>676-683.                 | 2.4 | 54        |
| 34 | Noninvasive Depiction of the Lenticulostriate Arteries with Time-of-Flight MR Angiography at 7.0 T.<br>Cerebrovascular Diseases, 2008, 26, 624-629.                                                                  | 0.8 | 52        |
| 35 | Targeting Cerebral Small Vessel Disease With MRI. Stroke, 2017, 48, 3175-3182.                                                                                                                                       | 1.0 | 52        |
| 36 | Propagation of Onset and PeakTime of Myocardial Shortening in Time of Myocardial Shortening in<br>Ischemic Versus Nonischemic Cardiomyopathy. Journal of the American College of Cardiology, 2005,<br>46, 2215-2222. | 1.2 | 51        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Does Myocardial Fibrosis Hinder Contractile Function and Perfusion in Idiopathic Dilated<br>Cardiomyopathy? PET and MR Imaging Study. Radiology, 2006, 240, 380-388.                                                             | 3.6 | 51        |
| 38 | Perivascular spaces in MS patients at 7 Tesla MRI: A marker of neurodegeneration?. Multiple Sclerosis<br>Journal, 2015, 21, 155-162.                                                                                             | 1.4 | 50        |
| 39 | Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. Journal of Magnetic Resonance Imaging, 2019, 49, 433-444.                                           | 1.9 | 48        |
| 40 | Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study.<br>European Radiology, 2009, 19, 2986-2992.                                                                                     | 2.3 | 40        |
| 41 | Visualization of cerebral microbleeds with dualâ€echo T2*â€weighted magnetic resonance imaging at 7.0 T.<br>Journal of Magnetic Resonance Imaging, 2010, 32, 52-59.                                                              | 1.9 | 40        |
| 42 | Thinner Regions of Intracranial Aneurysm Wall Correlate with Regions of Higher Wall Shear Stress: A<br>7T MRI Study. American Journal of Neuroradiology, 2016, 37, 1310-1317.                                                    | 1.2 | 40        |
| 43 | Direct detection of myocardial fibrosis by MRI. Journal of Molecular and Cellular Cardiology, 2011, 51, 974-979.                                                                                                                 | 0.9 | 39        |
| 44 | Major depressive episodes over the course of 7 years and hippocampal subfield volumes at 7 tesla MRI:<br>The PREDICT-MR study. Journal of Affective Disorders, 2015, 175, 1-7.                                                   | 2.0 | 39        |
| 45 | White matter hyperintensity shape and location feature analysis on brain MRI; proof of principle study in patients with diabetes. Scientific Reports, 2018, 8, 1893.                                                             | 1.6 | 39        |
| 46 | Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age<br>or cardiovascular risk factors. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1708-1717.                    | 2.4 | 38        |
| 47 | Abnormalities of Cerebral Deep Medullary Veins on 7 Tesla MRI in Amnestic Mild Cognitive Impairment<br>and Early Alzheimer's Disease: A Pilot Study. Journal of Alzheimer's Disease, 2017, 57, 705-710.                          | 1.2 | 38        |
| 48 | Clinical vascular imaging in the brain at 7 T. NeuroImage, 2018, 168, 452-458.                                                                                                                                                   | 2.1 | 38        |
| 49 | Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI.<br>NeuroImage, 2020, 210, 116581.                                                                                                   | 2.1 | 38        |
| 50 | Hippocampal Disconnection in Early Alzheimer's Disease: A 7 Tesla MRI Study. Journal of Alzheimer's<br>Disease, 2015, 45, 1247-1256.                                                                                             | 1.2 | 37        |
| 51 | High-Resolution Postcontrast Time-of-Flight MR Angiography of Intracranial Perforators at 7.0 Tesla.<br>PLoS ONE, 2015, 10, e0121051.                                                                                            | 1.1 | 37        |
| 52 | Regional heterogeneity of resting perfusion in hypertrophic cardiomyopathy is related to delayed<br>contrast enhancement but not to systolic function: A PET and MRI study. Journal of Nuclear<br>Cardiology, 2006, 13, 660-667. | 1.4 | 35        |
| 53 | Extended harmonic phase tracking of myocardial motion: Improved coverage of myocardium and its effect on strain results. Journal of Magnetic Resonance Imaging, 2006, 23, 682-690.                                               | 1.9 | 35        |
| 54 | Dissected Sentinel Lymph Nodes of Breast Cancer Patients: Characterization with<br>High-Spatial-Resolution 7-T MR Imaging. Radiology, 2011, 261, 127-135.                                                                        | 3.6 | 35        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DENSE and HARP: Two views on the same technique of phase-based strain imaging. Journal of Magnetic<br>Resonance Imaging, 2006, 24, 1432-1438.                                                                                                                                  | 1.9 | 34        |
| 56 | Quantitative Intracranial Atherosclerotic Plaque Characterization at 7T MRI: An Ex Vivo Study with<br>Histologic Validation. American Journal of Neuroradiology, 2016, 37, 802-810.                                                                                            | 1.2 | 34        |
| 57 | Better and faster velocity pulsatility assessment in cerebral white matter perforating arteries with 7T<br>quantitative flow MRI through improved slice profile, acquisition scheme, and postprocessing.<br>Magnetic Resonance in Medicine, 2018, 79, 1473-1482.               | 1.9 | 34        |
| 58 | T 2 mapping of cerebrospinal fluid: 3ÂT versus 7ÂT. Magnetic Resonance Materials in Physics, Biology, and<br>Medicine, 2018, 31, 415-424.                                                                                                                                      | 1.1 | 33        |
| 59 | An anomaly detection approach to identify chronic brain infarcts on MRI. Scientific Reports, 2021, 11, 7714.                                                                                                                                                                   | 1.6 | 33        |
| 60 | Endogenous assessment of chronic myocardial infarction with T1ϕmapping in patients. Journal of<br>Cardiovascular Magnetic Resonance, 2014, 16, 104.                                                                                                                            | 1.6 | 32        |
| 61 | Highâ€resolution MRI of the carotid arteries using a leaky waveguide transmitter and a highâ€density<br>receive array at 7 T. Magnetic Resonance in Medicine, 2013, 69, 1186-1193.                                                                                             | 1.9 | 31        |
| 62 | Endogenous contrast MRI of cardiac fibrosis: Beyond late gadolinium enhancement. Journal of<br>Magnetic Resonance Imaging, 2015, 41, 1181-1189.                                                                                                                                | 1.9 | 30        |
| 63 | 7 tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia. Epileptic Disorders, 2016, 18, 315-323.                                                                                                                                                   | 0.7 | 30        |
| 64 | Endogenous assessment of diffuse myocardial fibrosis in patients with T <sub>1Ï</sub> -mapping.<br>Journal of Magnetic Resonance Imaging, 2017, 45, 132-138.                                                                                                                   | 1.9 | 30        |
| 65 | Mechanical dyssynchrony or myocardial shortening as MRI predictor of response to biventricular pacing?. Journal of Magnetic Resonance Imaging, 2007, 26, 1452-1460.                                                                                                            | 1.9 | 29        |
| 66 | Quantifying cardiacâ€induced brain tissue expansion using DENSE. NMR in Biomedicine, 2019, 32, e4050.                                                                                                                                                                          | 1.6 | 28        |
| 67 | Regional timing of myocardial shortening is related to prestretch from atrial contraction:<br>assessment by high temporal resolution MRI tagging in humans. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2005, 288, H787-H794.                        | 1.5 | 27        |
| 68 | Quantification of deep medullary veins at 7 T brain MRI. European Radiology, 2016, 26, 3412-3418.                                                                                                                                                                              | 2.3 | 27        |
| 69 | ExÂvivo vessel wall thickness measurements of the human circle of Willis using 7T MRI.<br>Atherosclerosis, 2018, 273, 106-114.                                                                                                                                                 | 0.4 | 27        |
| 70 | MRI of the carotid artery at 7 Tesla: Quantitative comparison with 3 Tesla. Journal of Magnetic Resonance Imaging, 2015, 41, 773-780.                                                                                                                                          | 1.9 | 26        |
| 71 | The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation<br>of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study.<br>International Journal of Cardiovascular Imaging, 2007, 23, 529-536. | 0.7 | 25        |
| 72 | Characterization of ex vivo healthy human axillary lymph nodes with high resolution 7 Tesla MRI.<br>European Radiology, 2011, 21, 310-317.                                                                                                                                     | 2.3 | 23        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive<br>impairment and early Alzheimer's disease: A 7 Tesla MRI study. Journal of Cerebral Blood Flow and<br>Metabolism, 2020, 40, 739-746. | 2.4 | 23        |
| 74 | Generalized Multiple-Layer Appearance of the Cerebral Cortex with 3D FLAIR 7.0-T MR Imaging.<br>Radiology, 2012, 262, 995-1001.                                                                                                          | 3.6 | 22        |
| 75 | Distribution and natural course of intracranial vessel wall lesions in patients with ischemic stroke or TIA at 7.0 tesla MRI. European Radiology, 2015, 25, 1692-1700.                                                                   | 2.3 | 22        |
| 76 | 7-T MRI in Cerebrovascular Diseases. Topics in Magnetic Resonance Imaging, 2016, 25, 89-100.                                                                                                                                             | 0.7 | 21        |
| 77 | Validating faster DENSE measurements of cardiac-induced brain tissue expansion as a potential tool for investigating cerebral microvascular pulsations. NeuroImage, 2020, 208, 116466.                                                   | 2.1 | 21        |
| 78 | Vasodilatory Capacity of the Cerebral Vasculature in Patients with Carotid Artery Stenosis. American<br>Journal of Neuroradiology, 2011, 32, 1030-1033.                                                                                  | 1.2 | 20        |
| 79 | Cerebral Lesions on 7 Tesla MRI in Patients with Sickle Cell Anemia. Cerebrovascular Diseases, 2015, 39,<br>181-189.                                                                                                                     | 0.8 | 20        |
| 80 | Detecting Intracranial Vessel Wall Lesions With 7T-Magnetic Resonance Imaging. Stroke, 2017, 48, 2601-2604.                                                                                                                              | 1.0 | 20        |
| 81 | Assessment of Myocardial Fibrosis in Mice Using a T2*-Weighted 3D Radial Magnetic Resonance Imaging<br>Sequence. PLoS ONE, 2015, 10, e0129899.                                                                                           | 1.1 | 19        |
| 82 | FID sampling superior to spinâ€echo sampling for <i>T</i> â€based quantification of holmiumâ€loaded<br>microspheres: Theory and experiment. Magnetic Resonance in Medicine, 2008, 60, 1466-1476.                                         | 1.9 | 18        |
| 83 | 7.0 T MRI Detection of Cerebral Microinfarcts in Patients with a Symptomatic High-Grade Carotid artery Stenosis. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1715-1719.                                                     | 2.4 | 18        |
| 84 | Detailed view on slow sinusoidal, hemodynamic oscillations on the human brain cortex by<br><scp>F</scp> ourier transforming oxy/deoxy hyperspectral images. Human Brain Mapping, 2018, 39,<br>3558-3573.                                 | 1.9 | 18        |
| 85 | Single Breath-Hold T1ϕMapping of the Heart for Endogenous Assessment of Myocardial Fibrosis.<br>Investigative Radiology, 2016, 51, 505-512.                                                                                              | 3.5 | 17        |
| 86 | Hypertensive cerebral hemorrhage. Neurology, 2010, 75, 572-573.                                                                                                                                                                          | 1.5 | 16        |
| 87 | Adiabatic turbo spin echo in human applications at 7 T. Magnetic Resonance in Medicine, 2012, 68, 580-587.                                                                                                                               | 1.9 | 16        |
| 88 | Assessing Cortical Cerebral Microinfarcts on High Resolution MR Images. Journal of Visualized Experiments, 2015, , .                                                                                                                     | 0.2 | 16        |
| 89 | Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms. Computers in Biology and Medicine, 2020, 120, 103759.             | 3.9 | 16        |
| 90 | Data on vessel wall thickness measurements of intracranial arteries derived from human circle of<br>Willis specimens. Data in Brief, 2018, 19, 6-12.                                                                                     | 0.5 | 15        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy.<br>European Radiology, 2016, 26, 1254-1262.                                                                        | 2.3 | 14        |
| 92  | Velocity Pulsatility and Arterial Distensibility Along the Internal Carotid Artery. Journal of the American Heart Association, 2020, 9, e016883.                                                                    | 1.6 | 14        |
| 93  | Nonâ€Invasive Assessment of Damping of Blood Flow Velocity Pulsatility in Cerebral Arteries With<br><scp>MRI</scp> . Journal of Magnetic Resonance Imaging, 2022, 55, 1785-1794.                                    | 1.9 | 14        |
| 94  | Ischaemic Cavities in the Cerebellum: An ex vivo 7-Tesla MRI Study with Pathological Correlation.<br>Cerebrovascular Diseases, 2014, 38, 17-23.                                                                     | 0.8 | 13        |
| 95  | Seven-Tesla Magnetic Resonance Imaging of Atherosclerotic Plaque in the Significantly Stenosed<br>Carotid Artery. Investigative Radiology, 2014, 49, 749-757.                                                       | 3.5 | 13        |
| 96  | FLAIR images at 7 Tesla MRI highlight the ependyma and the outer layers of the cerebral cortex.<br>NeuroImage, 2015, 104, 100-109.                                                                                  | 2.1 | 13        |
| 97  | Quantitative T1 mapping under precisely controlled graded hyperoxia at 7T. Journal of Cerebral Blood<br>Flow and Metabolism, 2017, 37, 1461-1469.                                                                   | 2.4 | 13        |
| 98  | Vascular reactivity in small cerebral perforating arteries with 7†T phase contrast MRI – A proof of concept study. NeuroImage, 2018, 172, 470-477.                                                                  | 2.1 | 13        |
| 99  | Automated Assessment of Cerebral Arterial Perforator Function on 7T MRI. Journal of Magnetic Resonance Imaging, 2021, 53, 234-241.                                                                                  | 1.9 | 13        |
| 100 | Comparison of 3T Intracranial Vessel Wall MRI Sequences. American Journal of Neuroradiology, 2018,<br>39, 1112-1120.                                                                                                | 1.2 | 12        |
| 101 | Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3<br>Tesla MRI. PLoS ONE, 2016, 11, e0160781.                                                                    | 1.1 | 12        |
| 102 | Quantitative comparison of 2D and 3D circumferential strain using MRI tagging in normal and LBBB hearts. Magnetic Resonance in Medicine, 2007, 57, 485-493.                                                         | 1.9 | 11        |
| 103 | Relations between location and type of intracranial atherosclerosis and parenchymal damage. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1271-1280.                                                     | 2.4 | 11        |
| 104 | Automated Multi-Atlas Segmentation of Hippocampal and Extrahippocampal Subregions in Alzheimer's<br>Disease at 3T and 7T: What Atlas Composition Works Best?. Journal of Alzheimer's Disease, 2018, 63,<br>217-225. | 1.2 | 11        |
| 105 | Branching Pattern of the Cerebral Arterial Tree. Anatomical Record, 2019, 302, 1434-1446.                                                                                                                           | 0.8 | 11        |
| 106 | Does the Internal Carotid Artery Attenuate Bloodâ€Flow Pulsatility in Small Vessel Disease? A 7ÂT<br><scp>4D</scp> â€Flow <scp>MRI</scp> Study. Journal of Magnetic Resonance Imaging, 2022, 56, 527-535.           | 1.9 | 10        |
| 107 | Myelin contrast across lamina at 7T, ex-vivo and in-vivo dataset. Data in Brief, 2016, 8, 990-1003.                                                                                                                 | 0.5 | 9         |
| 108 | Quantification of Intracranial Aneurysm Volume Pulsation with 7T MRI. American Journal of Neuroradiology, 2018, 39, 713-719.                                                                                        | 1.2 | 8         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Intracranial Vessel Wall Magnetic Resonance Imaging Does Not Allow for Accurate and Precise Wall<br>Thickness Measurements. Stroke, 2019, 50, e283-e284.                                                                   | 1.0 | 8         |
| 110 | Zooming in on cerebral small vessel function in small vessel diseases with 7T MRI: Rationale and design of the "ZOOM@SVDs―study. Cerebral Circulation - Cognition and Behavior, 2021, 2, 100013.                           | 0.4 | 8         |
| 111 | Subvoxel vessel wall thickness measurements of the intracranial arteries using a convolutional neural network. Medical Image Analysis, 2021, 67, 101818.                                                                   | 7.0 | 7         |
| 112 | Strain Tensor Imaging: Cardiac-induced brain tissue deformation in humans quantified with high-field<br>MRI. NeuroImage, 2021, 236, 118078.                                                                                | 2.1 | 7         |
| 113 | High Resolution Imaging of Cerebral Small Vessel Disease with 7 T MRI. Acta Neurochirurgica<br>Supplementum, 2014, 119, 125-130.                                                                                           | 0.5 | 6         |
| 114 | Pulsatility Index in the Basal Ganglia Arteries Increases with Age in Elderly with and without Cerebral<br>Small Vessel Disease. American Journal of Neuroradiology, 2022, 43, 540-546.                                    | 1.2 | 6         |
| 115 | Dynamic brain <scp>ADC</scp> variations over the cardiac cycle andÂtheir relation to tissue strain<br>assessed with <scp>DENSE</scp> atÂhighâ€field <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022,<br>88, 266-279. | 1.9 | 6         |
| 116 | Automatic quantification of perivascular spaces in T2-weighted images at 7 T MRI. Cerebral Circulation<br>- Cognition and Behavior, 2022, 3, 100142.                                                                       | 0.4 | 6         |
| 117 | Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral<br>Hemorrhage. Translational Stroke Research, 2023, 14, 174-184.                                                                     | 2.3 | 6         |
| 118 | Ultra-High-Field MR Imaging. PET Clinics, 2013, 8, 311-328.                                                                                                                                                                | 1.5 | 5         |
| 119 | High resolution 7T and 9.4T-MRI of human cerebral arterial casts enables accurate estimations of the cerebrovascular morphometry. Scientific Reports, 2018, 8, 14235.                                                      | 1.6 | 5         |
| 120 | Arterial Remodeling of the Intracranial Arteries in Patients With Hypertension and Controls.<br>Hypertension, 2021, 77, 135-146.                                                                                           | 1.3 | 5         |
| 121 | Detecting low blood concentrations in joints using T1 and T2 mapping at 1.5, 3, and 7 T: an in vitro study. European Radiology Experimental, 2021, 5, 51.                                                                  | 1.7 | 5         |
| 122 | Double delay alternating with nutation for tailored excitation facilitates bandingâ€free isotropic<br>highâ€resolution intracranial vessel wall imaging. NMR in Biomedicine, 2021, 34, e4567.                              | 1.6 | 3         |
| 123 | Single shot MR tagging to quantify local tissue deformation during MRI-guided needle interventions:<br>A feasibility study. Medical Physics, 2011, 38, 5321-5329.                                                          | 1.6 | 2         |
| 124 | Automated detection of periventricular veins on 7 T brain MRI. Proceedings of SPIE, 2015, , .                                                                                                                              | 0.8 | 2         |
| 125 | Blood Flow Velocity Pulsatility and Arterial Diameter Pulsatility Measurements of the Intracranial<br>Arteries Using 4D PC-MRI. Neuroinformatics, 2022, 20, 317-326.                                                       | 1.5 | 2         |
| 126 | Cerebral Small Vessel Disease In Patients With Sickle Cell Disease: Initial Findings With Ultra-High<br>Field 7T MRI. Blood, 2013, 122, 1011-1011.                                                                         | 0.6 | 2         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Perforating artery flow velocity and pulsatility in patients with carotid occlusive disease. A 7 tesla<br>MRI study. Cerebral Circulation - Cognition and Behavior, 2022, 3, 100143.   | 0.4 | 2         |
| 128 | Pulsatility Attenuation along the Carotid Siphon in Pseudoxanthoma Elasticum. American Journal of Neuroradiology, 2021, 42, 2030-2033.                                                 | 1.2 | 1         |
| 129 | Advances in MRI for Elective Treatment of Lymph Nodes and Cranial Nerves in Head and Neck Cancer.<br>International Journal of Radiation Oncology Biology Physics, 2014, 90, S570-S571. | 0.4 | Ο         |
| 130 | Cover Image, Volume 29, Issue 9. NMR in Biomedicine, 2016, 29, i-i.                                                                                                                    | 1.6 | 0         |
| 131 | Increased Rather than Decreased Small Vessel Pulsatility in Patients with Progressing Cerebral White<br>Matter Hyperintensities. Radiology, 2018, 286, 363-364.                        | 3.6 | Ο         |
| 132 | Diagnostic Ability of CT to Help Differentiate Stenosis of 30% in Patients with Atrial Fibrillation.<br>Radiology, 2018, 286, 361-363.                                                 | 3.6 | 0         |
| 133 | Subvoxel vessel wall thickness measurements from vessel wall MR images. , 2019, , .                                                                                                    |     | Ο         |