Harihara Ramamoorthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4446001/publications.pdf

Version: 2024-02-01

20 papers 308 citations

1040056 9 h-index 18 g-index

21 all docs

21 docs citations

times ranked

21

616 citing authors

#	Article	IF	CITATIONS
1	Investigation of the high-field transport, Joule-heating-driven conductivity improvement and low-field resistivity behaviour in lightly-reduced free-standing graphene oxide papers. Journal Physics D: Applied Physics, 2022, 55, 245103.	2.8	3
2	Remote Mesoscopic Signatures of Induced Magnetic Texture in Graphene. Physical Review Letters, 2021, 126, 086802.	7.8	0
3	Versatile, Low-Cost, and Portable 2D Material Transfer Setup with a Facile and Highly Efficient DIY Inert-Atmosphere Glove Compartment Option. ACS Omega, 2021, 6, 17952-17964.	3.5	2
4	Exploration of the temperature-dependent correlations present in the structural, morphological and electrical properties of thermally reduced free-standing graphene oxide papers. Journal of Materials Science, 2021, 56, 15134-15150.	3.7	14
5	CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor. Nanomaterials, 2021, 11, 2642.	4.1	10
6	Cost-Effective Experimental Setup for Studies of Spin Seebeck Effect and Electrical Transport in Thermoelectric Materials. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3587-3594.	4.7	3
7	Universal scaling of weak localization in graphene due to bias-induced dispersion decoherence. Scientific Reports, 2020, 10, 5611.	3.3	1
8	Transient Response of h-BN-Encapsulated Graphene Transistors: Signatures of Self-Heating and Hot-Carrier Trapping. ACS Omega, 2019, 4, 4082-4090.	3. 5	12
9	In-situ current annealing of graphene-metal contacts. Journal of Physics: Conference Series, 2018, 1144, 012186.	0.4	3
10	Probing charge trapping and joule heating in graphene field-effect transistors by transient pulsing. Semiconductor Science and Technology, 2017, 32, 084005.	2.0	12
11	Negative Differential Conductance & Tot-Carrier Avalanching in Monolayer WS2 FETs. Scientific Reports, 2017, 7, 11256.	3.3	18
12	Evaluating the Sources of Graphene's Resistivity Using Differential Conductance. Scientific Reports, 2017, 7, 10317.	3.3	8
13	Conductance fluctuations in graphene in the presence of long-range disorder. Journal of Physics Condensed Matter, 2016, 28, 135302.	1.8	6
14	Thermally Assisted Nonvolatile Memory in Monolayer MoS ₂ Transistors. Nano Letters, 2016, 16, 6445-6451.	9.1	47
15	"Freeing―Graphene from Its Substrate: Observing Intrinsic Velocity Saturation with Rapid Electrical Pulsing. Nano Letters, 2016, 16, 399-403.	9.1	40
16	Energy relaxation of hot carriers in graphene via plasmon interactions. Journal of Computational Electronics, 2016, 15, 144-153.	2.5	0
17	Plasmon-mediated energy relaxation in graphene. Applied Physics Letters, 2015, 107, 262103.	3.3	3
18	Conduction Mechanisms in CVD-Grown Monolayer MoS ₂ Transistors: From Variable-Range Hopping to Velocity Saturation. Nano Letters, 2015, 15, 5052-5058.	9.1	92

#	Article	IF	CITATIONS
19	Reversing hot-carrier energy-relaxation in graphene with a magnetic field. Applied Physics Letters, 2014, 104, 193115.	3.3	5
20	Fast Energy Relaxation of Hot Carriers Near the Dirac Point of Graphene. Nano Letters, 2013, 13, 4305-4310.	9.1	29