
Ryuji Kikuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/444578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemically promoted ammonia synthesis on an Fe/BaZr _{0.8} Y _{0.2} O _{3â^'<i>δ</i>} catalyst at ambient pressure. Sustainable Energy and Fuels, 2022, 6, 458-465.	4.9	1
2	An <i>in situ</i> DRIFTS study on nitrogen electrochemical reduction over an Fe/BaZr _{0.8} Y _{0.2} O _{3â^'<i>Î′</i>} -Ru catalyst at 220 °C in an electrolysis cell using a CsH ₂ PO ₄ /SiP ₂ O ₇ electrolyte. RSC Advances, 2022, 12, 8474-8476.	3.6	2
3	Superior catalytic performance of intermetallic CaPt ₂ nanoparticles supported on titanium group oxides in hydrogenation of ketones to alcohols. Chemical Communications, 2022, 58, 4795-4798.	4.1	2
4	Intermetallic YIr ₂ nanoparticles with negatively charged Ir active sites for catalytic hydrogenation of cyclohexanone to cyclohexanol. Catalysis Science and Technology, 2022, 12, 3088-3093.	4.1	2
5	Understanding the structure of Cu-doped MgAl2O4 for CO2 hydrogenation catalyst precursor using experimental and computational approaches. International Journal of Hydrogen Energy, 2022, 47, 21369-21374.	7.1	2
6	Active Sites on Zn _{<i>x</i>} Zr _{1–<i>x</i>} O _{2–<i>x</i>} Solid Solution Catalysts for CO ₂ -to-Methanol Hydrogenation. ACS Catalysis, 2022, 12, 7748-7759.	11.2	37
7	Hydrogen Production by Steam Electrolysis in Solid Acid Electrolysis Cells. ChemSusChem, 2021, 14, 417-427.	6.8	12
8	How to scrutinize adsorbed intermediates observed by in situ spectroscopy: Analysis of Coverage Transients (ACT). Journal of Catalysis, 2021, 394, 273-283.	6.2	14
9	Hydrodeoxygenation of benzofuran on novel CoPdP catalysts supported on potassium ion exchanged ultra-stable Y-zeolites. Journal of Catalysis, 2021, 403, 160-172.	6.2	9
10	What Are the Best Active Sites for CO ₂ Methanation over Ni/CeO ₂ ?. Energy & amp; Fuels, 2021, 35, 5241-5251.	5.1	44
11	Influence of Reaction Temperature on CO2-to-methanol Hydrogenation over <i>M</i> ZrOx (<i>M</i> =) Tj ETQq1	1 0.7843 1.3	14.rgBT /O
12	Mechanochemical Effect in Mixing Sponge Copper with Amorphous ZrO ₂ Creates Effective Active Sites for Methanol Synthesis by CO ₂ Hydrogenation. Journal of Physical Chemistry C, 2021, 125, 8155-8162.	3.1	10
13	Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption. International Journal of Hydrogen Energy, 2021, 46, 22611-22617.	7.1	17
14	Effect of Sm Doping on CO ₂ -to-Methanol Hydrogenation of Cu/Amorphous-ZrO ₂ Catalysts. Journal of Physical Chemistry C, 2021, 125, 15899-15909.	3.1	8
15	Promotion of Hydrogen Oxidation and Methane Dry Reforming Over Ni-SDC Anode by Basic Oxide Additives. ECS Meeting Abstracts, 2021, MA2021-03, 108-108.	0.0	0
16	Promotion of Hydrogen Oxidation and Methane Dry Reforming Over Ni-SDC Anode by Basic Oxide Additives. ECS Transactions, 2021, 103, 1615-1624.	0.5	0
17	Dimethyl Ether Steam Reforming Utilizing Cu-based Catalysts Derived from Mg _{1–<i>x</i>} Cu _{<i>x</i>} Al ₂ O ₄ and γ-Al ₂ O ₃ . Journal of the Japan Petroleum Institute, 2021, 64, 226-237.	0.6	0
18	Porous intermetallic Ni ₂ XAl (X = Ti or Zr) nanoparticles prepared from oxide precursors. Nanoscale Advances, 2021, 3, 1901-1905.	4.6	11

#	Article	IF	CITATIONS
19	Ammonia synthesis using Fe/BZY–RuO ₂ catalysts and a caesium dihydrogen phosphate-based electrolyte at intermediate temperatures. Materials Advances, 2021, 2, 793-803.	5.4	8
20	Chemical route to prepare nickel supported on intermetallic Ti ₆ Si ₇ Ni ₁₆ nanoparticles catalyzing CO methanation. Nanoscale, 2021, 13, 16533-16542.	5.6	4
21	Flame spray pyrolysis makes highly loaded Cu nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chemical Engineering Journal, 2020, 381, 122750.	12.7	54
22	Simple chemical synthesis of intermetallic Pt ₂ Y bulk nanopowder. Materials Advances, 2020, 1, 2202-2205.	5.4	14
23	Direct electrochemical synthesis of oxygenates from ethane using phosphate-based electrolysis cells. Chemical Communications, 2020, 56, 11199-11202.	4.1	2
24	Development of CO ₂ -to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in Spinel-Type Oxide Mg _{1–<i>x</i>} Cu _{<i>x</i>} Al ₂ O ₄ . ACS Catalysis, 2020, 10, 15186-15194.	11.2	19
25	Mesoporous Intermetallic NiAl Nanocompound Prepared in a Molten LiCl Using Calcium Species as Templates. Chemistry Letters, 2020, 49, 341-343.	1.3	10
26	Regeneration behavior of reforming catalysts based on perovskite oxides LaM0.95Rh0.05O3 (M: Cr, Co,) Tj ETQ	q0	T /Qyerlock 10
27	Power-to-gas systems utilizing methanation reaction in solid oxide electrolysis cell cathodes: a model-based study. Sustainable Energy and Fuels, 2020, 4, 2691-2706.	4.9	12
28	Ru nanoparticles supported on amorphous ZrO ₂ for CO ₂ methanation. Catalysis Science and Technology, 2020, 10, 4522-4531.	4.1	26
29	Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor. Membranes, 2020, 10, 50.	3.0	10
30	Calcium-Modified Ni-SDC Anodes in Solid Oxide Fuel Cells for Direct Dry Reforming of Methane. Journal of the Electrochemical Society, 2020, 167, 134512.	2.9	5
31	Effects of Porosity and Ni/Al Molar Ratio in Ni–Al Oxide Precursors on Porous Intermetallic Nickel Aluminide Nanopowders Prepared by Chemical Route. Journal of Chemical Engineering of Japan, 2020, 53, 562-568.	0.6	7
32	Low-temperature Synthesis of Single Phase Intermetallic NiZn Bulk Nanopowder in Molten LiCl–KCl with CaH ₂ Reducing Agent. Journal of the Japan Petroleum Institute, 2020, 63, 380-387.	0.6	11
33	Dimethyl Ether Synthesis from CO ₂ –H ₂ Mixture over Cu/Amorphous-ZrO ₂ Mixed with FER-type Zeolite. Journal of the Japan Petroleum Institute, 2020, 63, 388-393.	0.6	3
34	Simple Chemical Synthesis of Ternary Intermetallic RENi ₂ Si ₂ (RE = Y, La) Nanoparticles in Molten LiCl–CaH ₂ System. Materials Transactions, 2020, 61, 1037-1040.	1.2	16
35	Infrared spectroscopic studies of the hydrodeoxygenation of Î ³ -valerolactone on Ni2P/MCM-41. Catalysis Today, 2019, 323, 54-61.	4.4	15
36	Combined In Situ XAFS and FTIR Study of the Hydrodeoxygenation Reaction of 2-Methyltetrahydrofuran on Ni ₂ P/SiO ₂ . Journal of Physical Chemistry C, 2019, 123, 7633-7643.	3.1	12

123, 7633-7643.

#	Article	IF	CITATIONS
37	Low Ni-Containing Cermet Anodes of Solid Oxide Fuel Cells with Size-Controlled Samarium-Doped Ceria Particles. Journal of the Electrochemical Society, 2019, 166, F716-F723.	2.9	4
38	Influences of particle size and crystallinity of highly loaded CuO/ZrO ₂ on CO ₂ hydrogenation to methanol. AICHE Journal, 2019, 65, e16717.	3.6	22
39	Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts. Chinese Journal of Catalysis, 2019, 40, 1741-1748.	14.0	22
40	Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation. Membranes, 2019, 9, 123.	3.0	8
41	Oxidative Coupling of Methane in Solid Oxide Electrolysis Cell. ECS Transactions, 2019, 91, 2697-2705.	0.5	8
42	Hydrogen Oxidation Activity of SOFC Anodes with Metal Oxide Addition. ECS Transactions, 2019, 91, 1837-1844.	0.5	1
43	Novel SOFC Anodes Using Pyrochlore-Type Mixed Conducting Materials. ECS Transactions, 2019, 91, 1881-1888.	0.5	4
44	Effects of Cu Precursor Types on the Catalytic Activity of Cu/ZrO ₂ toward Methanol Synthesis via CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 19434-19445.	3.7	30
45	High-performance anode for solid acid fuel cells prepared by mixing carbon substances with anode catalysts. International Journal of Hydrogen Energy, 2019, 44, 26545-26553.	7.1	7
46	Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes. Membranes, 2019, 9, 144.	3.0	12
47	Effects of ball-milling treatment on physicochemical properties and solid base activity of hexagonal boron nitrides. Catalysis Science and Technology, 2019, 9, 302-309.	4.1	42
48	Silica-supported chromia-titania catalysts for selective formation of lactic acid from a triose in water. Applied Catalysis A: General, 2019, 570, 200-208.	4.3	16
49	Cu Species Incorporated into Amorphous ZrO ₂ with High Activity and Selectivity in CO ₂ -to-Methanol Hydrogenation. Journal of Physical Chemistry C, 2018, 122, 5430-5442.	3.1	83
50	Mechanochemical Decomposition of Crystalline Cellulose in the Presence of Protonated Layered Niobium Molybdate Solid Acid Catalyst. ChemSusChem, 2018, 11, 888-896.	6.8	22
51	Synthesis and characterization of hydrogen selective silica membranes prepared by chemical vapor deposition of vinyltriethoxysilane. Journal of Membrane Science, 2018, 550, 1-8.	8.2	26
52	Methanol synthesis <i>via</i> CO ₂ hydrogenation over CuO–ZrO ₂ prepared by two-nozzle flame spray pyrolysis. Catalysis Science and Technology, 2018, 8, 2056-2060.	4.1	45
53	Synthesis and characterization of a silica-alumina composite membrane and its application in a membrane reactor. Separation and Purification Technology, 2018, 195, 437-445.	7.9	23
54	Effects of pressure, contact time, permeance, and selectivity in membrane reactors: The case of the dehydrogenation of ethane. Separation and Purification Technology, 2018, 194, 197-206.	7.9	24

#	Article	IF	CITATIONS
55	Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2. Catalysis Communications, 2018, 113, 41-45.	3.3	42
56	Degradation Factors of Ni/TiO ₂ Catalysts for Selective CO Methanation: Effect of Loss of Residual Cl on Catalyst. Journal of the Japan Petroleum Institute, 2018, 61, 80-86.	0.6	0
57	Design of Interfacial Sites between Cu and Amorphous ZrO ₂ Dedicated to CO ₂ -to-Methanol Hydrogenation. ACS Catalysis, 2018, 8, 7809-7819.	11.2	159
58	lsolated Zr Surface Sites on Silica Promote Hydrogenation of CO ₂ to CH ₃ OH in Supported Cu Catalysts. Journal of the American Chemical Society, 2018, 140, 10530-10535.	13.7	170
59	Oxidative Dehydrogenation of Ethane Using Ball-milled Hexagonal Boron Nitride. Chemistry Letters, 2018, 47, 1090-1093.	1.3	26
60	Preface to the special issue for the 5th Asian Conference on Innovative Energy & Environmental Chemical Engineering (ASCON-IEEChE) 2016. Journal of Chemical Engineering of Japan, 2018, 51, 711-711.	0.6	0
61	CO ₂ â€toâ€Methanol Hydrogenation on Zirconiaâ€Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface. Angewandte Chemie - International Edition, 2017, 56, 2318-2323.	13.8	435
62	Permeation properties of silica-zirconia composite membranes supported on porous alumina substrates. Journal of Membrane Science, 2017, 526, 409-416.	8.2	39
63	Ag addition to CuO-ZrO 2 catalysts promotes methanol synthesis via CO 2 hydrogenation. Journal of Catalysis, 2017, 351, 107-118.	6.2	93
64	Gas Diffusion Electrode With Large Amounts of Gas Diffusion Channel Using Hydrophobic Carbon Fiber: For Oxygen Reduction Reaction at Gas/Liquid Interfaces. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	2.1	4
65	Comparison of phosphide catalysts prepared by temperature-programmed reduction and liquid-phase methods in the hydrodeoxygenation of 2-methylfuran. Applied Catalysis A: General, 2017, 548, 39-46.	4.3	14
66	Overcoming pressure drop losses in membrane reactors by semi-batch operation. Separation and Purification Technology, 2017, 185, 175-185.	7.9	5
67	CO ₂ â€ŧoâ€Methanol Hydrogenation on Zirconiaâ€&upported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal–Support Interface. Angewandte Chemie, 2017, 129, 2358-2363.	2.0	51
68	Hydrodeoxygenation of gamma-valerolactone on transition metal phosphide catalysts. Catalysis Science and Technology, 2017, 7, 281-292.	4.1	39
69	Ammonia synthesis at intermediate temperatures in solid-state electrochemical cells using cesium hydrogen phosphate based electrolytes and noble metal catalysts. International Journal of Hydrogen Energy, 2017, 42, 26843-26854.	7.1	31
70	Utilization of hexagonal boron nitride as a solid acid–base bifunctional catalyst. Journal of Catalysis, 2017, 355, 176-184.	6.2	54
71	Properties of Yttrium-Doped Barium Zirconate (BZY)-Hematite Mixed Ionic-Electronic Conductor. ECS Transactions, 2017, 78, 451-459.	0.5	4
72	Investigation of Solid Oxide Electrolysis Cell Electrodes for Methane Synthesis. ECS Transactions, 2017, 78, 3247-3256.	0.5	3

#	Article	IF	CITATIONS
73	Ni-SDC Based Cermets for Direct Dry Reforming of Methane on SOFC Anode. ECS Transactions, 2017, 78, 1161-1167.	0.5	5
74	Hydrodeoxygenation of γ-valerolactone on bimetallic NiMo phosphide catalysts. Journal of Catalysis, 2017, 353, 141-151.	6.2	30
75	Sponge Ni catalyst with high activity in CO2 methanation. International Journal of Hydrogen Energy, 2017, 42, 30126-30134.	7.1	69
76	Hydrogenation of 2,5-dimethylfuran on hexagonal-boron nitride- and silica-supported platinum catalysts. Applied Catalysis A: General, 2017, 548, 122-127.	4.3	17
77	CsH5(PO4)2/quartz fiber thin membranes for intermediate temperature fuel cells and electrochemical synthesis of ammonia. Journal of Applied Electrochemistry, 2017, 47, 803-814.	2.9	10
78	Steam Reforming of Dimethyl Ether over Composite Catalysts of Supported Transition Metal Oxides and Cu/ZnO/Al ₂ 0 ₃ . Journal of the Japan Petroleum Institute, 2016, 59, 293-298.	0.6	0
79	Supported fluorocarbon liquid membranes for hydrogen/oxygen separation. Journal of Membrane Science, 2016, 520, 272-280.	8.2	8
80	Ammonia Synthesis by N ₂ and Steam Electrolysis in Solid-State Cells at 220°C and Atmospheric Pressure. Journal of the Electrochemical Society, 2016, 163, E282-E287.	2.9	24
81	Kinetic and Infrared Spectroscopy Study of Hydrodeoxygenation of 2-Methyltetrahydrofuran on a Nickel Phosphide Catalyst at Atmospheric Pressure. ACS Catalysis, 2016, 6, 7701-7709.	11.2	35
82	Surface Sites in Cu-Nanoparticles: Chemical Reactivity or Microscopy?. Journal of Physical Chemistry Letters, 2016, 7, 3259-3263.	4.6	30
83	Metal Phosphide-Based Novel Anodes for Intermediate Temperature Fuel Cells. ECS Transactions, 2016, 75, 931-937.	0.5	3
84	Interfacial conduction mechanism of cesium hydrogen phosphate and silicon pyrophosphate composite electrolytes for intermediate-temperature fuel cells. Solid State Ionics, 2016, 285, 160-164.	2.7	10
85	Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. Journal of Catalysis, 2016, 333, 115-126.	6.2	147
86	Stability of CsH5(PO4)2-based composites at fixed temperatures and during heating–cooling cycles for solid-state intermediate temperature fuel cells. Journal of Power Sources, 2016, 306, 578-586.	7.8	15
87	Interfacial interaction and melting point depression of CsH5(PO4)2 in CsH5(PO4)2/SiO2 composites. Solid State Ionics, 2016, 289, 133-142.	2.7	10
88	CO2 Hydrogenation: Supported Nanoparticles vs. Immobilized Catalysts. Chimia, 2015, 69, 759.	0.6	10
89	Efficient Epimerization of Aldoses Using Layered Niobium Molybdates. ChemSusChem, 2015, 8, 3769-3772.	6.8	24
90	The optimal point within the Robeson upper boundary. Chemical Engineering Research and Design, 2015, 97, 109-119.	5.6	13

#	Article	IF	CITATIONS
91	Alkylamine–silica hybrid membranes for carbon dioxide/methane separation. Journal of Membrane Science, 2015, 477, 161-171.	8.2	36
92	CsH2PO4/Epoxy Composite Electrolytes for Intermediate Temperature Fuel Cells. Electrochimica Acta, 2015, 169, 219-226.	5.2	34
93	Production of Phenol and Cresol from Guaiacol on Nickel Phosphide Catalysts Supported on Acidic Supports. Topics in Catalysis, 2015, 58, 201-210.	2.8	56
94	Active Sites in Ni2P/USY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran. Topics in Catalysis, 2015, 58, 219-231.	2.8	20
95	Mechanistic study and catalyst development for selective carbon monoxide methanation. Catalysis Science and Technology, 2015, 5, 3061-3070.	4.1	102
96	Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation. Separation and Purification Technology, 2015, 148, 38-48.	7.9	31
97	Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas. Applied Catalysis B: Environmental, 2015, 174-175, 486-495.	20.2	54
98	Low Ni-Containing Anodes Using Titanate-Based Perovskites for Methane Direct Internal Reforming Power Generation. ECS Transactions, 2015, 68, 1489-1498.	0.5	0
99	Development of inorganic–organic hybrid membranes for carbon dioxide/methane separation. Journal of Membrane Science, 2014, 471, 402-411.	8.2	28
100	CsH ₂ PO ₄ /Polyvinylidene Fluoride Composite Electrolytes for Intermediate Temperature Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F451-F457.	2.9	38
101	Kinetic studies of hydrodeoxygenation of 2-methyltetrahydrofuran on a Ni2P/SiO2 catalyst at medium pressure. Journal of Catalysis, 2014, 311, 17-27.	6.2	112
102	Long-term durability of Ni/TiO2 and Ru–Ni/TiO2 catalysts for selective CO methanation. Journal of Power Sources, 2014, 264, 59-66.	7.8	73
103	Intercalation ontrolled Cyclodehydration of Sorbitol in Water over Layeredâ€Niobiumâ€Molybdate Solid Acid. ChemSusChem, 2014, 7, 748-752.	6.8	35
104	Preparation of Ru nanoparticles on TiO ₂ using selective deposition method and their application to selective CO methanation. Catalysis Science and Technology, 2014, 4, 26-29.	4.1	18
105	Perfluorooctanol-based liquid membranes for H2/O2 separation. Separation and Purification Technology, 2014, 122, 431-439.	7.9	11
106	CsH5(PO4)2 doped glass membranes for intermediate temperature fuel cells. Journal of Power Sources, 2014, 272, 1018-1029.	7.8	12
107	Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation. Catalysis Today, 2014, 232, 16-21.	4.4	54
108	Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 2014, 39, 10090-10100.	7.1	152

Rұијі Кікисні

#	Article	IF	CITATIONS
109	Effect of Ru and Ni ratio on selective CO methanation over Ru–Ni/TiO2. Fuel, 2014, 129, 219-224.	6.4	43
110	Novel Nickel Catalysts Based on Spinel-Type Mixed Oxides for Methane and Propane Steam Reforming. Journal of Chemical Engineering of Japan, 2014, 47, 530-535.	0.6	12
111	Study of Ru Ni/TiO2 catalysts for selective CO methanation. Applied Catalysis B: Environmental, 2013, 140-141, 258-264.	20.2	82
112	Effects of preparation conditions of Ni/TiO2 catalysts for selective CO methanation in the reformate gas. Applied Catalysis A: General, 2013, 452, 174-178.	4.3	50
113	Supported perfluorotributylamine liquid membrane for H2/O2 separation. Journal of Membrane Science, 2013, 448, 262-269.	8.2	11
114	N ₂ O Pulse Titration of Ni/α-Al ₂ O ₃ Catalysts: A New Technique Applicable to Nickel Surface-Area Determination of Nickel-Based Catalysts. Journal of Physical Chemistry C, 2013, 117, 14652-14658.	3.1	50
115	Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Separation and Purification Technology, 2013, 116, 19-24.	7.9	17
116	Fabrication of Low Ni-Containing SOFC Anode Using Mixed Ionic and Electronic Conductors. ECS Transactions, 2013, 57, 1201-1210.	0.5	1
117	Ligand and Ensemble Effects in Bimetallic NiFe Phosphide Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran. Topics in Catalysis, 2012, 55, 969-980.	2.8	44
118	Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 2012, 37, 5527-5531.	7.1	478
119	Review on Mechanisms of Gas Permeation through Inorganic Membranes. Journal of the Japan Petroleum Institute, 2011, 54, 298-309.	0.6	64
120	Effect of reduction pretreatment and support materials on selective CO methanation over supported Ru catalysts. Applied Catalysis A: General, 2011, 404, 149-154.	4.3	70
121	Dimethyl ether steam reforming under daily start-up and shut-down (DSS)-like operation over CuFe2O4 spinel and alumina composite catalysts. Applied Catalysis A: General, 2011, 409-410, 91-98.	4.3	25
122	Stable equilibrium shift of methane steam reforming in membrane reactors with hydrogen-selective silica membranes. AICHE Journal, 2011, 57, 1882-1888.	3.6	21
123	A study of various zeolites and CuFe2O4 spinel composite catalysts in steam reforming and hydrolysis of dimethyl ether. International Journal of Hydrogen Energy, 2011, 36, 1433-1441.	7.1	34
124	Reaction Sites of Mixed Conductor Anodes in Solid Oxide Fuel Cells. ECS Transactions, 2011, 35, 1707-1715.	0.5	3
125	Development of Novel Proton Conductors Consisting of Solid Acid/pyrophosphate Composite for Intermediate-temperature Fuel Cells. Journal of the Japan Petroleum Institute, 2010, 53, 1-11.	0.6	27
126	Selective Methanation of CO in Reformate Gas over Ni/TiO2 Catalyst. Chemistry Letters, 2010, 39, 972-973.	1.3	29

#	Article	IF	CITATIONS
127	Preparation of silver nanoparticles using the SPG membrane emulsification technique. Journal of Membrane Science, 2010, 354, 1-5.	8.2	27
128	Effect of Support Materials on the Selective Methanation of CO over Ru Catalysts. Topics in Catalysis, 2010, 53, 707-711.	2.8	39
129	Supported and Free-Standing Sulfonic Acid Functionalized Mesostructured Silica Films with High Proton Conductivity. European Journal of Inorganic Chemistry, 2010, 2010, 3993-3999.	2.0	11
130	Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether. Applied Catalysis A: General, 2010, 378, 234-242.	4.3	39
131	Nano-structural changes of SnO2-supported palladium catalysts by redox treatments. Applied Catalysis A: General, 2010, 379, 148-154.	4.3	22
132	Limiting mechanisms in catalytic steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2010, 97, 21-27.	20.2	43
133	Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2010, 97, 120-126.	20.2	33
134	Activation of Pt/SnO2 catalyst for catalytic oxidation of volatile organic compounds. Catalysis Today, 2010, 157, 415-419.	4.4	46
135	Preparation of Monodisperse Chitosan Microcapsules with Hollow Structures Using the SPG Membrane Emulsification Technique. Langmuir, 2010, 26, 14854-14860.	3.5	48
136	Dehydrogenation of Methylcyclohexane To Produce High-Purity Hydrogen Using Membrane Reactors with Amorphous Silica Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 11287-11293.	3.7	65
137	Three Preparation Methods for Monodispersed Chitosan Microspheres Using the Shirasu Porous Glass Membrane Emulsification Technique and Mechanisms of Microsphere Formation. Industrial & Engineering Chemistry Research, 2010, 49, 3236-3241.	3.7	28
138	Activation of LSM Electrode Related to the Potential Oscillation under Cathodic Polarization. Journal of the Electrochemical Society, 2010, 157, B880.	2.9	19
139	Selective Carbon Monoxide Methanation Reaction Over Supported Ruthenium Catalysts. , 2010, , .		0
140	Effect of High Current Loading on the Performance Enhancement of SOFCs. ECS Transactions, 2009, 25, 517-524.	0.5	0
141	Correlation between Crystalline Phase of ScSZ and Carbon Deposition Behavior Over Ni-ScSZ Anode for Internal Reforming of Solid Oxide Fuel Cells. ECS Transactions, 2009, 25, 2091-2098.	0.5	0
142	X-ray photoelectron spectroscopy characterization of copper–iron spinel as a catalyst for steam reforming of oxygenated hydrocarbon. Scripta Materialia, 2009, 60, 655-658.	5.2	10
143	Low-Temperature Complete Oxidation of Ethyl Acetate Over CeO2-Supported Precious Metal Catalysts. Topics in Catalysis, 2009, 52, 464-469.	2.8	48
144	Reforming activity and carbon deposition on cermet catalysts for fuel electrodes of solid oxide fuel cells. Catalysis Today, 2009, 146, 154-159.	4.4	31

#	Article	IF	CITATIONS
145	Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether. Applied Catalysis A: General, 2009, 365, 71-78.	4.3	33
146	Sintering and redispersion of platinum catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2009, 89, 65-72.	20.2	43
147	Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2009, 92, 341-350.	20.2	82
148	Stability Enhancement in Ni-Promoted Cuâ^'Fe Spinel Catalysts for Dimethyl Ether Steam Reforming. Journal of Physical Chemistry C, 2009, 113, 18455-18458.	3.1	25
149	Electrochemical CO Oxidation and Microstructure in Pt/Co[sub 3]O[sub 4]-Based Catalysts. Journal of the Electrochemical Society, 2009, 156, K128.	2.9	7
150	Electrochemical Hydrogen Production from Carbon Monoxide and Steam with a Cell Employing CsH[sub 2]PO[sub 4]/SiP[sub 2]O[sub 7] Composite Electrolyte. Journal of the Electrochemical Society, 2009, 156, B1389.	2.9	9
151	Sudden Deterioration in Performance During Discharge of Anode-supported Solid Oxide Fuel Cells. Electrochemistry, 2009, 77, 123-126.	1.4	12
152	Microstructural Transformation with Heat-Treatment of Aluminum Hydroxide with Gibbsite Structure. Bulletin of the Chemical Society of Japan, 2009, 82, 618-623.	3.2	7
153	Effect of Thermal Treatment on Activity and Durability of CuFe ₂ O ₄ –Al ₂ O ₃ Composite Catalysts for Steam Reforming of Dimethyl Ether. Angewandte Chemie - International Edition, 2008, 47, 9314-9317.	13.8	54
154	Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. Journal of Power Sources, 2008, 179, 497-503.	7.8	37
155	Steam reforming on Ni-samaria-doped ceria cermet anode for practical size solid oxide fuel cell at intermediate temperatures. Journal of Power Sources, 2008, 182, 496-502.	7.8	11
156	Formation of layered Al2O3 and its inhibitory effect on the sintering of supported platinum particles. Applied Catalysis A: General, 2008, 348, 121-128.	4.3	8
157	Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts. Applied Catalysis B: Environmental, 2008, 78, 158-165.	20.2	48
158	Transmission electron microscopic observation on reduction process of copper–iron spinel catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2008, 80, 156-167.	20.2	37
159	Support effect on complete oxidation of volatile organic compounds over Ru catalysts. Applied Catalysis B: Environmental, 2008, 81, 56-63.	20.2	87
160	Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: Hydrogen reduction and metal dopant effects. Catalysis Today, 2008, 138, 157-161.	4.4	49
161	Cu-based spinel catalysts CuB2O4 (B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether. Applied Catalysis A: General, 2008, 341, 139-145.	4.3	115
162	Deactivation and regeneration behaviors of copper spinel–alumina composite catalysts in steam reforming of dimethyl ether. Journal of Catalysis, 2008, 256, 37-44.	6.2	70

#	Article	IF	CITATIONS
163	Influence of the Supporting Matrix on the Electrochemical Properties of CsH ₅ (PO ₄) ₂ Composites at Intermediate Temperatures. Journal of Physical Chemistry C, 2008, 112, 15532-15536.	3.1	23
164	Correlation Between Conduction Behavior of CsH[sub 5](PO[sub 4])[sub 2] and Thermal History. Journal of the Electrochemical Society, 2008, 155, B958.	2.9	17
165	Carbon Deposition over Ni–ScSZ Anodes Subjected to Various Heat-Treatments for Internal Reforming of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2008, 155, B1136.	2.9	15
166	Investigation on the Power Generation and Electrolysis Behavior of Ni-YSZâ^•YSZâ^•LSM Cell in Reformate Fuel. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	8
167	Direct Internal Steam Reforming at SOFC Anodes Composed of NiO–SDC Composite Particles. Journal of the Electrochemical Society, 2007, 154, B460.	2.9	21
168	Direct Internal Steam Reforming at SOFC with Anode Prepared Using NiO-SDC Composite Particles. ECS Transactions, 2007, 7, 1455-1464.	0.5	1
169	Degradation Behavior of Ni–ScSZ Cermet Anode under Various Humidified Conditions for Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1237.	2.9	18
170	Activation Process of Solid Oxide Fuel Cells under Polarization Conditions. ECS Transactions, 2007, 7, 1251-1260.	0.5	3
171	Preparation and Characterization of CO-Tolerant Pt and Pd Anodes Modified with SnO[sub 2] Nanoparticles for PEFC. Journal of the Electrochemical Society, 2007, 154, B1132.	2.9	32
172	Electrode Polarization Characteristics of Solid Oxide Fuel Cells Under Pressurized Conditions. ECS Transactions, 2007, 7, 851-858.	0.5	3
173	Behavior of Carbon Deposition on Fuel Electrode and Subsequent Deterioration of Cell Performance During Internal Reforming Operation of SOFCs. ECS Transactions, 2007, 7, 1437-1445.	0.5	13
174	Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Applied Catalysis B: Environmental, 2007, 74, 144-151.	20.2	166
175	Internal Reforming of SOFCs. Journal of the Electrochemical Society, 2007, 154, B234.	2.9	86
176	Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide. Journal of Physical Chemistry C, 2007, 111, 16470-16476.	3.1	41
177	Electrochemical properties of MH2PO4/SiP2O7-based electrolytes (M=alkaline metal) for use in intermediate-temperature fuel cells. Solid State Ionics, 2007, 178, 1512-1516.	2.7	44
178	A comparative study of solid acids in hydrolysis and steam reforming of dimethyl ether. Applied Catalysis A: General, 2007, 333, 114-121.	4.3	80
179	Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. Journal of Power Sources, 2007, 164, 73-79.	7.8	61
180	Novel anode materials for multi-fuel applicable solid oxide fuel cells. Journal of Alloys and Compounds, 2006, 408-412, 622-627.	5.5	13

Rұијі Кікисні

#	Article	IF	CITATIONS
181	Composite effects of silicon pyrophosphate as a supporting matrix for CsH5(PO4)2 electrolytes at intermediate temperatures. Electrochimica Acta, 2006, 51, 3719-3723.	5.2	40
182	Chemical interaction between Pt and SnO and influence on adsorptive properties of carbon monoxide. Applied Catalysis A: General, 2006, 298, 181-187.	4.3	89
183	Effects of electrolyte in dye-sensitized solar cells and evaluation by impedance spectroscopy. Electrochimica Acta, 2006, 51, 5286-5294.	5.2	119
184	Influence of solid–acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production. Applied Catalysis A: General, 2006, 304, 40-48.	4.3	104
185	Preparation of silica-modified TiO2 and application to dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 78-85.	3.9	31
186	Electrochemical oxidation of CO over tin oxide supported platinum catalysts. Journal of Power Sources, 2006, 155, 152-156.	7.8	80
187	Thermodynamic evaluation of methanol steam reforming for hydrogen production. Journal of Power Sources, 2006, 161, 87-94.	7.8	134
188	Impedance analysis for dye-sensitized solar cells with a reference electrode. Journal of Electroanalytical Chemistry, 2006, 588, 59-67.	3.8	70
189	Effect of reduction–oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts. Science and Technology of Advanced Materials, 2006, 7, 524-530.	6.1	43
190	Development of NO sorbents tolerant to sulfur oxides. Journal of Catalysis, 2006, 238, 449-457.	6.2	27
191	Composite Effect on the Structure and Proton Conductivity for CsHSO[sub 4] Electrolytes at Intermediate Temperatures. Journal of the Electrochemical Society, 2006, 153, A1077.	2.9	20
192	Intermediate-Temperature Fuel Cell Employing CsH[sub 2]PO[sub 4]â^•SiP[sub 2]O[sub 7]-Based Composite Electrolytes. Journal of the Electrochemical Society, 2006, 153, A339.	2.9	80
193	Impedance analysis for dye-sensitized solar cells with a three-electrode system. Journal of Electroanalytical Chemistry, 2005, 577, 339-348.	3.8	74
194	Influence of preparation method and additive for Cu–Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Applied Catalysis A: General, 2005, 279, 59-66.	4.3	105
195	Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel. Applied Catalysis B: Environmental, 2005, 57, 211-222.	20.2	156
196	Partial oxidation of CH4 and C3H8 over hexaaluminate-type oxides. Applied Catalysis A: General, 2005, 281, 61-67.	4.3	44
197	Determination of dispersion of precious metals on CeO2-containing supports. Applied Catalysis A: General, 2005, 293, 91-96.	4.3	145
198	Electrochemical properties and chemical stabilities of (NH4)2SO4/TiO2 composites at intermediate temperatures. Solid State Ionics, 2005, 176, 2467-2470.	2.7	8

#	Article	IF	CITATIONS
199	Proton conductivity and stability of CsHPWO electrolyte at intermediate temperatures. Solid State Ionics, 2005, 176, 1845-1848.	2.7	35
200	An Intermediate Temperature Proton-Conducting Electrolyte Based on a CsH2PO4 / SiP2O7 Composite. Electrochemical and Solid-State Letters, 2005, 8, A256-A258.	2.2	61
201	Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2005, 152, E68.	2.9	307
202	Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions. Solid State Ionics, 2004, 174, 111-117.	2.7	19
203	SOx sorption–desorption characteristics by ZrO2-based mixed oxides. Applied Catalysis A: General, 2004, 259, 191-197.	4.3	13
204	Solid Oxide Fuel Cell as a Multi-fuel Applicable Power Generation Device. Journal of the Japan Petroleum Institute, 2004, 47, 225-238.	0.6	15
205	Development of Solid Oxide Fuel Cells and the Component Materials. , 2004, , .		1
206	Catalytic Combustion of Volatile Organic Compounds on Supported Precious Metal Catalysts. Topics in Catalysis, 2003, 23, 159-162.	2.8	43
207	Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide. Journal of Catalysis, 2003, 215, 271-278.	6.2	148
208	High temperature catalytic combustion of methane and propane over hexaaluminate catalysts: NOx emission characteristics. Catalysis Today, 2003, 83, 223-231.	4.4	14
209	Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catalysis Today, 2003, 84, 217-222.	4.4	113
210	CO removal from reformed fuel over Cu/ZnO/Al2O3 catalysts prepared by impregnation and coprecipitation methods. Applied Catalysis A: General, 2003, 238, 11-18.	4.3	94
211	Catalytic activity of oxide-supported Pd catalysts on a honeycomb for low-temperature methane oxidation. Applied Catalysis A: General, 2003, 239, 169-179.	4.3	29
212	Catalytic autothermal reforming of methane and propane over supported metal catalysts. Applied Catalysis A: General, 2003, 241, 261-269.	4.3	262
213	Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels. Applied Catalysis A: General, 2003, 242, 287-295.	4.3	101
214	Water gas shift reaction of reformed fuel over supported Ru catalysts. Applied Catalysis A: General, 2003, 245, 343-351.	4.3	84
215	CO removal from reformed fuels over Cu and precious metal catalysts. Applied Catalysis A: General, 2003, 246, 117-124.	4.3	51
216	Partial oxidation of methane over Ni catalysts based on hexaaliminate- or perovskite-type oxides. Applied Catalysis A: General, 2003, 247, 125-131.	4.3	43

#	Article	IF	CITATIONS
217	Strong chemical interaction between PdO and SnO2 and the influence on catalytic combustion of methane. Applied Catalysis A: General, 2003, 252, 205-214.	4.3	73
218	49 NOx sorption-desorption mechanism of ZrO2-based oxide. Studies in Surface Science and Catalysis, 2003, 145, 247-250.	1.5	1
219	Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H[sub 2] and CO Gases. Journal of the Electrochemical Society, 2002, 149, A227.	2.9	64
220	Impedance Analysis of Electronic Transport in Dye-sensitized Solar Cells. Electrochemistry, 2002, 70, 675-680.	1.4	28
221	Direct-Alcohol/Hydrocarbon SOFCs : Comparison of Power Generation Characteristics for Various Fuels. Electrochemistry, 2002, 70, 18-22.	1.4	24
222	Development of zirconia-based oxide sorbents for removal of NO and NO2. Applied Catalysis B: Environmental, 2002, 37, 107-115.	20.2	22
223	A role of components in Pt-ZrO2/Al2O3 as a sorbent for removal of NO and NO2. Applied Catalysis A: General, 2002, 226, 23-30.	4.3	40
224	Low-temperature methane oxidation over oxide-supported Pd catalysts: inhibitory effect of water vapor. Applied Catalysis A: General, 2002, 232, 23-28.	4.3	112
225	Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics, 2002, 152-153, 411-416.	2.7	215
226	Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets. Journal of Power Sources, 2002, 112, 588-595.	7.8	275
227	Thick-film coating of hexaaluminate catalyst on ceramic substrates and its catalytic activity for high-temperature methane combustion. Applied Catalysis A: General, 2001, 218, 101-111.	4.3	14
228	Effect of preparation methods on NOx removal ability by sorption in Pt–ZrO2–Al2O3. Applied Catalysis A: General, 2001, 219, 107-116.	4.3	9
229	Characterization of nonlinear dynamics in a circulating fluidized bed by rescaled range analysis and short-term predictability analysis. Chemical Engineering Science, 2001, 56, 6545-6552.	3.8	19
230	Nonlinear Modeling of Chaotic Dynamics in a Circulating Fluidized Bed by an Artificial Neural Network Journal of Chemical Engineering of Japan, 2001, 34, 107-113.	0.6	13
231	Design of Energy and Chemicals Co-Production Systems Using Solid Oxide Fuel Cell Technology. ECS Proceedings Volumes, 2001, 2001-16, 214-223.	0.1	0
232	The Latest Frontiers of Bubble Columns and Slurry Bubble Columns. Prediction of Dynamic Heat Transfer of a 2-D Bubble Column Using ANNs Kagaku Kogaku Ronbunshu, 2001, 27, 461-465.	0.3	0
233	Advanced Energy Conversion Technologies. Thermochemical Recuperative Combined Cycle with Methane-Steam Reforming Combustion Kagaku Kogaku Ronbunshu, 2000, 26, 257-262.	0.3	3
234	Design and scale-up methodology for multi-phase reactors based on non-linear dynamics. Applied Energy, 2000, 67, 195-219.	10.1	6

#	ARTICLE	IF	CITATIONS
235	Design and scale-up methodology for multi-phase reactors based on non-linear dynamics. , 2000, , 195-219.		0
236	Nonlinear Phenomena. Nonlinear Hydrodynamics of Three-Phase Reactors Kagaku Kogaku Ronbunshu, 1999, 25, 530-534.	0.3	1
237	Stochastic analysis of bubble and particle motions in a 2-D three-phase reactor Journal of Chemical Engineering of Japan, 1997, 30, 202-209.	0.6	5
238	Hydrogenation of ethyl phenylacetate to 2-phenylethanol by ruthenium/tin/alumina catalysts elimination of need for high temperature activation of the catalysts with hydrogen; optimum oxidation state of tin. Applied Catalysis A: General, 1997, 165, 309-317.	4.3	5
239	Diagnosis of chaotic dynamics of bubble motion in a bubble column. Chemical Engineering Science, 1997, 52, 3741-3745.	3.8	69
240	Fractal aspect of hydrodynamics in a three-phase fluidized bed. Chemical Engineering Science, 1996, 51, 2865-2870.	3.8	24