
## Cristina Meregalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4445621/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Clinical and preclinical features of eribulin-related peripheral neuropathy. Experimental Neurology, 2022, 348, 113925.                                                                                                                                                                          | 4.1 | 3         |
| 2  | Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells, 2022, 11, 1358.                                                                                                                                            | 4.1 | 4         |
| 3  | Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics.<br>Cancers, 2022, 14, 2978.                                                                                                                                                                       | 3.7 | 10        |
| 4  | Pathogenic role of delta 2 tubulin in bortezomib-induced peripheral neuropathy. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .                                                                                                                 | 7.1 | 24        |
| 5  | Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of<br>Paclitaxel-Induced Peripheral Neurotoxicity. International Journal of Molecular Sciences, 2021, 22,<br>1058.                                                                                               | 4.1 | 11        |
| 6  | Blood molecular biomarkers for chemotherapy-induced peripheral neuropathy: From preclinical models to clinical practice. Neuroscience Letters, 2021, 749, 135739.                                                                                                                                | 2.1 | 10        |
| 7  | Assessment of Protein as a in Rodent Models of Toxic-Induced Peripheral. Neuromethods, 2021, , 267-275.                                                                                                                                                                                          | 0.3 | 0         |
| 8  | Reversal of Bortezomib-Induced Neurotoxicity by Suvecaltamide, a Selective T-Type Ca-Channel<br>Modulator, in Preclinical Models. Cancers, 2021, 13, 5013.                                                                                                                                       | 3.7 | 6         |
| 9  | Cannabinoids: an Effective Treatment for Chemotherapy-Induced Peripheral Neurotoxicity?.<br>Neurotherapeutics, 2021, 18, 2324-2336.                                                                                                                                                              | 4.4 | 4         |
| 10 | Systems Pharmacology Modeling Identifies a Novel Treatment Strategy for Bortezomib-Induced Neuropathic Pain. Frontiers in Pharmacology, 2021, 12, 817236.                                                                                                                                        | 3.5 | 6         |
| 11 | Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity Neuropharmacology, 2020, 164, 107905.                                                                                                                                          | 4.1 | 30        |
| 12 | Early Stimulation of TREK Channel Transcription and Activity Induced by Oxaliplatin-Dependent<br>Cytosolic Acidification. International Journal of Molecular Sciences, 2020, 21, 7164.                                                                                                           | 4.1 | 2         |
| 13 | Calmangafodipir Reduces Sensory Alterations and Prevents Intraepidermal Nerve Fibers Loss in a<br>Mouse Model of Oxaliplatin Induced Peripheral Neurotoxicity. Antioxidants, 2020, 9, 594.                                                                                                       | 5.1 | 18        |
| 14 | The relevance of multimodal assessment in experimental oxaliplatin-induced peripheral neurotoxicity.<br>Experimental Neurology, 2020, 334, 113458.                                                                                                                                               | 4.1 | 10        |
| 15 | Reply to a Comment Paper on the Published Paper by Canta, A. et al: "Calmangafodipir Reduces Sensory<br>Alterations and Prevents Intraepidermal Nerve Fibers Loss in a Mouse Model of Oxaliplatin Induced<br>Peripheral Neurotoxicityâ€â€"Antioxidants 2020, 9, 594. Antioxidants, 2020, 9, 807. | 5.1 | 1         |
| 16 | Neurofilament light chain: a specific serum biomarker of axonal damage severity in rat models of<br>Chemotherapy-Induced Peripheral Neurotoxicity. Archives of Toxicology, 2020, 94, 2517-2522.                                                                                                  | 4.2 | 43        |
| 17 | Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced<br>Peripheral Neuropathy. Frontiers in Immunology, 2020, 11, 626687.                                                                                                                                  | 4.8 | 76        |
| 18 | Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. International Journal of<br>Molecular Sciences, 2019, 20, 2287.                                                                                                                                                          | 4.1 | 30        |

CRISTINA MEREGALLI

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Anti-tumor Efficacy Assessment of the Sigma Receptor Pan Modulator RC-106. A Promising Therapeutic<br>Tool for Pancreatic Cancer. Frontiers in Pharmacology, 2019, 10, 490.                      | 3.5 | 14        |
| 20 | Ghrelin agonist HM01 attenuates chemotherapy-induced neurotoxicity in rodent models. European<br>Journal of Pharmacology, 2018, 840, 89-103.                                                     | 3.5 | 15        |
| 21 | Neurofilament light chain as disease biomarker in a rodent model of chemotherapy induced peripheral neuropathy. Experimental Neurology, 2018, 307, 129-132.                                      | 4.1 | 51        |
| 22 | High-dose intravenous immunoglobulins reduce nerve macrophage infiltration and the severity of bortezomib-induced peripheral neurotoxicity in rats. Journal of Neuroinflammation, 2018, 15, 232. | 7.2 | 39        |
| 23 | Therapeutic potential of Mesenchymal Stem Cells for the treatment of diabetic peripheral neuropathy.<br>Experimental Neurology, 2017, 288, 75-84.                                                | 4.1 | 21        |
| 24 | Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: Phenotypic and genotypic insights. PLoS ONE, 2017, 12, e0186250.                                              | 2.5 | 52        |
| 25 | Age-related changes in the function and structure of the peripheral sensory pathway in mice.<br>Neurobiology of Aging, 2016, 45, 136-148.                                                        | 3.1 | 30        |
| 26 | An Overview of Bortezomib-Induced Neurotoxicity. Toxics, 2015, 3, 294-303.                                                                                                                       | 3.7 | 40        |
| 27 | Lowering Plasma 1-Deoxysphingolipids Improves Neuropathy in Diabetic Rats. Diabetes, 2015, 64, 1035-1045.                                                                                        | 0.6 | 69        |
| 28 | Chemotherapy-induced peripheral neurotoxicity in immune-deficient mice: New useful ready-to-use<br>animal models. Experimental Neurology, 2015, 264, 92-102.                                     | 4.1 | 23        |
| 29 | Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle, 2014, 13, 612-621.                 | 2.6 | 62        |
| 30 | A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer. Investigational New Drugs, 2014, 32, 1123-1133.                    | 2.6 | 12        |
| 31 | Islet Transplantation and Insulin Administration Relieve Long-Term Complications and Rescue the<br>Residual Endogenous Pancreatic β Cells. American Journal of Pathology, 2013, 183, 1527-1538.  | 3.8 | 8         |
| 32 | Bortezomib-Induced Painful Peripheral Neuropathy: An Electrophysiological, Behavioral,<br>Morphological and Mechanistic Study in the Mouse. PLoS ONE, 2013, 8, e72995.                           | 2.5 | 69        |
| 33 | Antibody against tumor necrosis factor-α reduces bortezomib-induced allodynia in a rat model.<br>Anticancer Research, 2013, 33, 5453-9.                                                          | 1.1 | 20        |
| 34 | CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats. Journal of Pain Research, 2012, 5, 151.                                            | 2.0 | 38        |
| 35 | Exposure–Response Relationship of the Synthetic Epothilone Sagopilone in a Peripheral Neurotoxicity<br>Rat Model. Neurotoxicity Research, 2012, 22, 91-101.                                      | 2.7 | 2         |
| 36 | Abstract 933: Peripheral neuropathy induced by chronic administration of Cisplatin, taxol and bortezomib in several murine models. , 2012, , .                                                   |     | 0         |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abstract 5679: Characterizationin vivoof two different molecular mechanisms involved in the development of bortezomib-induced peripheral neuropathy. , 2012, , .    |     | 0         |
| 38 | Abstract 657: The new analgesic CR4056 effectively abrogates neuropathic pain induced by Bortezomib in rats. , 2011, , .                                            |     | 0         |
| 39 | Different effects of erythropoietin in cisplatin―and docetaxelâ€induced neurotoxicity: An in vitro study.<br>Journal of Neuroscience Research, 2010, 88, 3171-3179. | 2.9 | 20        |
| 40 | Bortezomibâ€induced painful neuropathy in rats: A behavioral, neurophysiological and pathological study in rats. European Journal of Pain, 2010, 14, 343-350.       | 2.8 | 88        |
| 41 | The ventral caudal nerve: a physiologicâ€morphometric study in three different rat strains. Journal of the Peripheral Nervous System, 2010, 15, 140-146.            | 3.1 | 10        |
| 42 | Continuous Buprenorphine Delivery Effect in Streptozotocine-Induced Painful Diabetic Neuropathy in<br>Rats. Journal of Pain, 2009, 10, 961-968.                     | 1.4 | 18        |